mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays

This note studies the stability problem of nonlinear positive differential-difference equations with unbounded time-varying delays. Under assumptions on the nonlinear vector fields, such as being homogeneous, cooperative, and order-preserving, conditions are derived for positivity and asymptotic sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-12, Vol.69 (12), p.8852-8859
Hauptverfasser: Cui, Yukang, Wu, Zongze, Gong, Xin, Basin, Michael V., Huang, Tingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8859
container_issue 12
container_start_page 8852
container_title IEEE transactions on automatic control
container_volume 69
creator Cui, Yukang
Wu, Zongze
Gong, Xin
Basin, Michael V.
Huang, Tingwen
description This note studies the stability problem of nonlinear positive differential-difference equations with unbounded time-varying delays. Under assumptions on the nonlinear vector fields, such as being homogeneous, cooperative, and order-preserving, conditions are derived for positivity and asymptotic stability of nonlinear differential-difference equations, which include the corresponding linear system as a special case. This work features three main contributions: first, a necessary and sufficient positivity condition is proposed for nonlinear differential-difference equations with delays. Then, utilizing the concept of homogeneity, a necessary and sufficient condition is provided for the global asymptotic stability of such positive nonlinear systems with unbounded delays. Finally, we analyze the global \mu-stability of the systems with unbounded time-varying delays to estimate the convergence rates of the system dynamics. The effectiveness of the obtained theoretical results is illustrated by numerical examples, including an analysis of nonlinear epidemic-spreading processes.
doi_str_mv 10.1109/TAC.2024.3425666
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10591356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10591356</ieee_id><sourcerecordid>10_1109_TAC_2024_3425666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-abe48e01abe21a360699579b28f02bd4569628cd9c68f0c08d2b519cb14077cc3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKfvPviQP5CZpEnaPI5tOmGg4KaPJU1vZ6RttEmF_ns7NsGnwzncczl8CN0yOmOM6vvtfDHjlItZIrhUSp2hCZMyI1zy5BxNKGUZ0TxTl-gqhM_RKiHYBLmmJ6_RFK52ccC-wi8-uOh-AK994_fQgu8DXrqqgg7a6ExN_owFvPruTXS-DfjdxQ-8awvftyWUeOsaIG-mG1y7x0uozRCu0UVl6gA3J52i3cNqu1iTzfPj02K-IZaJNBJTgMiAslE5M4miSmuZ6oJnFeVFKaTSime21FaNiaVZyQvJtC2YoGlqbTJF9PjXdj6EDqr8q3PNOCVnND-gykdU-QFVfkI1Vu6OFQcA_86lZolUyS9Onma1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Yukang ; Wu, Zongze ; Gong, Xin ; Basin, Michael V. ; Huang, Tingwen</creator><creatorcontrib>Cui, Yukang ; Wu, Zongze ; Gong, Xin ; Basin, Michael V. ; Huang, Tingwen</creatorcontrib><description>This note studies the stability problem of nonlinear positive differential-difference equations with unbounded time-varying delays. Under assumptions on the nonlinear vector fields, such as being homogeneous, cooperative, and order-preserving, conditions are derived for positivity and asymptotic stability of nonlinear differential-difference equations, which include the corresponding linear system as a special case. This work features three main contributions: first, a necessary and sufficient positivity condition is proposed for nonlinear differential-difference equations with delays. Then, utilizing the concept of homogeneity, a necessary and sufficient condition is provided for the global asymptotic stability of such positive nonlinear systems with unbounded delays. Finally, we analyze the global &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;-stability of the systems with unbounded time-varying delays to estimate the convergence rates of the system dynamics. The effectiveness of the obtained theoretical results is illustrated by numerical examples, including an analysis of nonlinear epidemic-spreading processes.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3425666</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula> </named-content>-stability ; Asymptotic stability ; Delays ; Differential-difference equations (DDEs) ; homogeneous cooperative systems ; Mathematical models ; positive systems ; Thermal stability ; Time-varying systems ; unbounded time-varying delays ; Vectors]]></subject><ispartof>IEEE transactions on automatic control, 2024-12, Vol.69 (12), p.8852-8859</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0597-1426 ; 0000-0002-7274-4303 ; 0000-0001-6883-5088 ; 0009-0009-8389-4276 ; 0000-0001-9610-846X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10591356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10591356$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Yukang</creatorcontrib><creatorcontrib>Wu, Zongze</creatorcontrib><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Basin, Michael V.</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><title>mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note studies the stability problem of nonlinear positive differential-difference equations with unbounded time-varying delays. Under assumptions on the nonlinear vector fields, such as being homogeneous, cooperative, and order-preserving, conditions are derived for positivity and asymptotic stability of nonlinear differential-difference equations, which include the corresponding linear system as a special case. This work features three main contributions: first, a necessary and sufficient positivity condition is proposed for nonlinear differential-difference equations with delays. Then, utilizing the concept of homogeneity, a necessary and sufficient condition is provided for the global asymptotic stability of such positive nonlinear systems with unbounded delays. Finally, we analyze the global &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;-stability of the systems with unbounded time-varying delays to estimate the convergence rates of the system dynamics. The effectiveness of the obtained theoretical results is illustrated by numerical examples, including an analysis of nonlinear epidemic-spreading processes.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula> </named-content>-stability]]></subject><subject>Asymptotic stability</subject><subject>Delays</subject><subject>Differential-difference equations (DDEs)</subject><subject>homogeneous cooperative systems</subject><subject>Mathematical models</subject><subject>positive systems</subject><subject>Thermal stability</subject><subject>Time-varying systems</subject><subject>unbounded time-varying delays</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKfvPviQP5CZpEnaPI5tOmGg4KaPJU1vZ6RttEmF_ns7NsGnwzncczl8CN0yOmOM6vvtfDHjlItZIrhUSp2hCZMyI1zy5BxNKGUZ0TxTl-gqhM_RKiHYBLmmJ6_RFK52ccC-wi8-uOh-AK994_fQgu8DXrqqgg7a6ExN_owFvPruTXS-DfjdxQ-8awvftyWUeOsaIG-mG1y7x0uozRCu0UVl6gA3J52i3cNqu1iTzfPj02K-IZaJNBJTgMiAslE5M4miSmuZ6oJnFeVFKaTSime21FaNiaVZyQvJtC2YoGlqbTJF9PjXdj6EDqr8q3PNOCVnND-gykdU-QFVfkI1Vu6OFQcA_86lZolUyS9Onma1</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cui, Yukang</creator><creator>Wu, Zongze</creator><creator>Gong, Xin</creator><creator>Basin, Michael V.</creator><creator>Huang, Tingwen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0597-1426</orcidid><orcidid>https://orcid.org/0000-0002-7274-4303</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0009-0009-8389-4276</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid></search><sort><creationdate>20241201</creationdate><title>mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays</title><author>Cui, Yukang ; Wu, Zongze ; Gong, Xin ; Basin, Michael V. ; Huang, Tingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-abe48e01abe21a360699579b28f02bd4569628cd9c68f0c08d2b519cb14077cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula> </named-content>-stability]]></topic><topic>Asymptotic stability</topic><topic>Delays</topic><topic>Differential-difference equations (DDEs)</topic><topic>homogeneous cooperative systems</topic><topic>Mathematical models</topic><topic>positive systems</topic><topic>Thermal stability</topic><topic>Time-varying systems</topic><topic>unbounded time-varying delays</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yukang</creatorcontrib><creatorcontrib>Wu, Zongze</creatorcontrib><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Basin, Michael V.</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Yukang</au><au>Wu, Zongze</au><au>Gong, Xin</au><au>Basin, Michael V.</au><au>Huang, Tingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>69</volume><issue>12</issue><spage>8852</spage><epage>8859</epage><pages>8852-8859</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note studies the stability problem of nonlinear positive differential-difference equations with unbounded time-varying delays. Under assumptions on the nonlinear vector fields, such as being homogeneous, cooperative, and order-preserving, conditions are derived for positivity and asymptotic stability of nonlinear differential-difference equations, which include the corresponding linear system as a special case. This work features three main contributions: first, a necessary and sufficient positivity condition is proposed for nonlinear differential-difference equations with delays. Then, utilizing the concept of homogeneity, a necessary and sufficient condition is provided for the global asymptotic stability of such positive nonlinear systems with unbounded delays. Finally, we analyze the global &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt;&lt;/inline-formula&gt;-stability of the systems with unbounded time-varying delays to estimate the convergence rates of the system dynamics. The effectiveness of the obtained theoretical results is illustrated by numerical examples, including an analysis of nonlinear epidemic-spreading processes.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3425666</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0597-1426</orcidid><orcidid>https://orcid.org/0000-0002-7274-4303</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0009-0009-8389-4276</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-12, Vol.69 (12), p.8852-8859
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10591356
source IEEE Electronic Library (IEL)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> mu</tex-math> </inline-formula> </named-content>-stability
Asymptotic stability
Delays
Differential-difference equations (DDEs)
homogeneous cooperative systems
Mathematical models
positive systems
Thermal stability
Time-varying systems
unbounded time-varying delays
Vectors
title mu-Stability of Positive Homogeneous Differential-Difference Equations With Unbounded Time-Varying Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mu-Stability%20of%20Positive%20Homogeneous%20Differential-Difference%20Equations%20With%20Unbounded%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Cui,%20Yukang&rft.date=2024-12-01&rft.volume=69&rft.issue=12&rft.spage=8852&rft.epage=8859&rft.pages=8852-8859&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3425666&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2024_3425666%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10591356&rfr_iscdi=true