Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey

Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.108000-108040
Hauptverfasser: Amodu, Oluwatosin Ahmed, Jarray, Chedia, Azlina Raja Mahmood, Raja, Althumali, Huda, Ali Bukar, Umar, Nordin, Rosdiadee, Abdullah, Nor Fadzilah, Cong Luong, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108040
container_issue
container_start_page 108000
container_title IEEE access
container_volume 12
creator Amodu, Oluwatosin Ahmed
Jarray, Chedia
Azlina Raja Mahmood, Raja
Althumali, Huda
Ali Bukar, Umar
Nordin, Rosdiadee
Abdullah, Nor Fadzilah
Cong Luong, Nguyen
description Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection points can be determined, sensor node transmissions can be scheduled efficiently, and irregular traffic patterns can be learned effectively. In view of the significance of DRL for UAV-assisted IoT research in general and, more specifically, its use for time-critical applications, this paper presents a review of the existing literature on UAV-aided data collection for WSN and IoT applications related to the application of DRL to minimize the Age of Information (AoI), a recent metric used to measure the degree of freshness of transmitted information collected in data-gathering applications. This review aims to provide insights into the state-of-the-art techniques, challenges, and opportunities in this domain through an extensive analysis of a sizable range of related research papers in this domain. It discusses application areas of UAV-assisted IoT, such as environmental monitoring, infrastructure inspection, and disaster response. Then, the paper focuses on the proposed works, their optimization objectives, architectures, simulation libraries and complexities of the various DRL-based approaches used. Thereafter discussion, challenges, and some opportunities for future work are provided. The findings of this review serve as a valuable resource for researchers and practitioners, guiding further advancements and innovations in the field of DRL for UAV-aided data collection in WSN and IoT applications.
doi_str_mv 10.1109/ACCESS.2024.3425497
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10589619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589619</ieee_id><doaj_id>oai_doaj_org_article_8ba0e34121ee415681c73b8c1d29ee30</doaj_id><sourcerecordid>3090986751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2528601c217124ceda1889616687895e8c4835999744c527cb3cf568268b4c843</originalsourceid><addsrcrecordid>eNpNkU9P4zAQxaPVIm0F_QRwsMQ5xf9jc4sCC5XKrkQLHC3XmVauUjvrpCuxn37TBiHm4tHz_N7Yell2SfCMEKxvyqq6Xy5nFFM-Y5wKrotv2YQSqXMmmPz-pf-RTbtuh4dSgySKSdbfAbToGXzYxORgD6FHC7Ap-LBFg4TKOEdPPvi9_2d7HwPyAb2Ur3npa6jRne0tqmLTgDtdHom35S9kQ43mcYXKtm28O4HdLSrR8pD-wvtFdraxTQfTj_M8e_l5v6oe88Xvh3lVLnJHle5zKqiSmDhKCkK5g9oSpbQkUqpCaQHKccWE1rrg3AlauDVzGyEVlWrNneLsPJuPvnW0O9Mmv7fp3UTrzUmIaWts6r1rwKi1xcA4oQSAk8GEuIKtlSM11QAMD17Xo1eb4p8DdL3ZxUMKw_MNwxprJQtBhik2TrkUuy7B5nMrweaYlhnTMse0zEdaA3U1Uh4AvhDi-FvN_gM0Ro1y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090986751</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Amodu, Oluwatosin Ahmed ; Jarray, Chedia ; Azlina Raja Mahmood, Raja ; Althumali, Huda ; Ali Bukar, Umar ; Nordin, Rosdiadee ; Abdullah, Nor Fadzilah ; Cong Luong, Nguyen</creator><creatorcontrib>Amodu, Oluwatosin Ahmed ; Jarray, Chedia ; Azlina Raja Mahmood, Raja ; Althumali, Huda ; Ali Bukar, Umar ; Nordin, Rosdiadee ; Abdullah, Nor Fadzilah ; Cong Luong, Nguyen</creatorcontrib><description>Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection points can be determined, sensor node transmissions can be scheduled efficiently, and irregular traffic patterns can be learned effectively. In view of the significance of DRL for UAV-assisted IoT research in general and, more specifically, its use for time-critical applications, this paper presents a review of the existing literature on UAV-aided data collection for WSN and IoT applications related to the application of DRL to minimize the Age of Information (AoI), a recent metric used to measure the degree of freshness of transmitted information collected in data-gathering applications. This review aims to provide insights into the state-of-the-art techniques, challenges, and opportunities in this domain through an extensive analysis of a sizable range of related research papers in this domain. It discusses application areas of UAV-assisted IoT, such as environmental monitoring, infrastructure inspection, and disaster response. Then, the paper focuses on the proposed works, their optimization objectives, architectures, simulation libraries and complexities of the various DRL-based approaches used. Thereafter discussion, challenges, and some opportunities for future work are provided. The findings of this review serve as a valuable resource for researchers and practitioners, guiding further advancements and innovations in the field of DRL for UAV-aided data collection in WSN and IoT applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3425497</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Age of information (AoI) ; Autonomous aerial vehicles ; Classification algorithms ; Data acquisition ; Data collection ; Deep learning ; Deep reinforcement learning ; deep reinforcement learning (DRL) ; Drones ; Energy efficiency ; Environmental monitoring ; Information age ; Internet of Things ; Internet of Things (IoT) ; Minimization ; scheduling ; State-of-the-art reviews ; Surveys ; trajectory ; Trajectory optimization ; Unmanned aerial vehicles ; unmanned aerial vehicles (UAVs) ; Wireless sensor networks ; wireless sensor networks (WSN)</subject><ispartof>IEEE access, 2024, Vol.12, p.108000-108040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-2528601c217124ceda1889616687895e8c4835999744c527cb3cf568268b4c843</cites><orcidid>0000-0002-9208-1295 ; 0000-0001-9254-2023 ; 0000-0002-4078-6066 ; 0000-0002-3983-6919 ; 0000-0002-6593-5603 ; 0000-0002-4299-3456 ; 0000-0002-1169-4226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589619$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Amodu, Oluwatosin Ahmed</creatorcontrib><creatorcontrib>Jarray, Chedia</creatorcontrib><creatorcontrib>Azlina Raja Mahmood, Raja</creatorcontrib><creatorcontrib>Althumali, Huda</creatorcontrib><creatorcontrib>Ali Bukar, Umar</creatorcontrib><creatorcontrib>Nordin, Rosdiadee</creatorcontrib><creatorcontrib>Abdullah, Nor Fadzilah</creatorcontrib><creatorcontrib>Cong Luong, Nguyen</creatorcontrib><title>Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection points can be determined, sensor node transmissions can be scheduled efficiently, and irregular traffic patterns can be learned effectively. In view of the significance of DRL for UAV-assisted IoT research in general and, more specifically, its use for time-critical applications, this paper presents a review of the existing literature on UAV-aided data collection for WSN and IoT applications related to the application of DRL to minimize the Age of Information (AoI), a recent metric used to measure the degree of freshness of transmitted information collected in data-gathering applications. This review aims to provide insights into the state-of-the-art techniques, challenges, and opportunities in this domain through an extensive analysis of a sizable range of related research papers in this domain. It discusses application areas of UAV-assisted IoT, such as environmental monitoring, infrastructure inspection, and disaster response. Then, the paper focuses on the proposed works, their optimization objectives, architectures, simulation libraries and complexities of the various DRL-based approaches used. Thereafter discussion, challenges, and some opportunities for future work are provided. The findings of this review serve as a valuable resource for researchers and practitioners, guiding further advancements and innovations in the field of DRL for UAV-aided data collection in WSN and IoT applications.</description><subject>Age of information (AoI)</subject><subject>Autonomous aerial vehicles</subject><subject>Classification algorithms</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>Drones</subject><subject>Energy efficiency</subject><subject>Environmental monitoring</subject><subject>Information age</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Minimization</subject><subject>scheduling</subject><subject>State-of-the-art reviews</subject><subject>Surveys</subject><subject>trajectory</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><subject>unmanned aerial vehicles (UAVs)</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSN)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P4zAQxaPVIm0F_QRwsMQ5xf9jc4sCC5XKrkQLHC3XmVauUjvrpCuxn37TBiHm4tHz_N7Yell2SfCMEKxvyqq6Xy5nFFM-Y5wKrotv2YQSqXMmmPz-pf-RTbtuh4dSgySKSdbfAbToGXzYxORgD6FHC7Ap-LBFg4TKOEdPPvi9_2d7HwPyAb2Ur3npa6jRne0tqmLTgDtdHom35S9kQ43mcYXKtm28O4HdLSrR8pD-wvtFdraxTQfTj_M8e_l5v6oe88Xvh3lVLnJHle5zKqiSmDhKCkK5g9oSpbQkUqpCaQHKccWE1rrg3AlauDVzGyEVlWrNneLsPJuPvnW0O9Mmv7fp3UTrzUmIaWts6r1rwKi1xcA4oQSAk8GEuIKtlSM11QAMD17Xo1eb4p8DdL3ZxUMKw_MNwxprJQtBhik2TrkUuy7B5nMrweaYlhnTMse0zEdaA3U1Uh4AvhDi-FvN_gM0Ro1y</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Amodu, Oluwatosin Ahmed</creator><creator>Jarray, Chedia</creator><creator>Azlina Raja Mahmood, Raja</creator><creator>Althumali, Huda</creator><creator>Ali Bukar, Umar</creator><creator>Nordin, Rosdiadee</creator><creator>Abdullah, Nor Fadzilah</creator><creator>Cong Luong, Nguyen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9208-1295</orcidid><orcidid>https://orcid.org/0000-0001-9254-2023</orcidid><orcidid>https://orcid.org/0000-0002-4078-6066</orcidid><orcidid>https://orcid.org/0000-0002-3983-6919</orcidid><orcidid>https://orcid.org/0000-0002-6593-5603</orcidid><orcidid>https://orcid.org/0000-0002-4299-3456</orcidid><orcidid>https://orcid.org/0000-0002-1169-4226</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey</title><author>Amodu, Oluwatosin Ahmed ; Jarray, Chedia ; Azlina Raja Mahmood, Raja ; Althumali, Huda ; Ali Bukar, Umar ; Nordin, Rosdiadee ; Abdullah, Nor Fadzilah ; Cong Luong, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2528601c217124ceda1889616687895e8c4835999744c527cb3cf568268b4c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age of information (AoI)</topic><topic>Autonomous aerial vehicles</topic><topic>Classification algorithms</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>Drones</topic><topic>Energy efficiency</topic><topic>Environmental monitoring</topic><topic>Information age</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Minimization</topic><topic>scheduling</topic><topic>State-of-the-art reviews</topic><topic>Surveys</topic><topic>trajectory</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><topic>unmanned aerial vehicles (UAVs)</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodu, Oluwatosin Ahmed</creatorcontrib><creatorcontrib>Jarray, Chedia</creatorcontrib><creatorcontrib>Azlina Raja Mahmood, Raja</creatorcontrib><creatorcontrib>Althumali, Huda</creatorcontrib><creatorcontrib>Ali Bukar, Umar</creatorcontrib><creatorcontrib>Nordin, Rosdiadee</creatorcontrib><creatorcontrib>Abdullah, Nor Fadzilah</creatorcontrib><creatorcontrib>Cong Luong, Nguyen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodu, Oluwatosin Ahmed</au><au>Jarray, Chedia</au><au>Azlina Raja Mahmood, Raja</au><au>Althumali, Huda</au><au>Ali Bukar, Umar</au><au>Nordin, Rosdiadee</au><au>Abdullah, Nor Fadzilah</au><au>Cong Luong, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>108000</spage><epage>108040</epage><pages>108000-108040</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection points can be determined, sensor node transmissions can be scheduled efficiently, and irregular traffic patterns can be learned effectively. In view of the significance of DRL for UAV-assisted IoT research in general and, more specifically, its use for time-critical applications, this paper presents a review of the existing literature on UAV-aided data collection for WSN and IoT applications related to the application of DRL to minimize the Age of Information (AoI), a recent metric used to measure the degree of freshness of transmitted information collected in data-gathering applications. This review aims to provide insights into the state-of-the-art techniques, challenges, and opportunities in this domain through an extensive analysis of a sizable range of related research papers in this domain. It discusses application areas of UAV-assisted IoT, such as environmental monitoring, infrastructure inspection, and disaster response. Then, the paper focuses on the proposed works, their optimization objectives, architectures, simulation libraries and complexities of the various DRL-based approaches used. Thereafter discussion, challenges, and some opportunities for future work are provided. The findings of this review serve as a valuable resource for researchers and practitioners, guiding further advancements and innovations in the field of DRL for UAV-aided data collection in WSN and IoT applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3425497</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-9208-1295</orcidid><orcidid>https://orcid.org/0000-0001-9254-2023</orcidid><orcidid>https://orcid.org/0000-0002-4078-6066</orcidid><orcidid>https://orcid.org/0000-0002-3983-6919</orcidid><orcidid>https://orcid.org/0000-0002-6593-5603</orcidid><orcidid>https://orcid.org/0000-0002-4299-3456</orcidid><orcidid>https://orcid.org/0000-0002-1169-4226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.108000-108040
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10589619
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Age of information (AoI)
Autonomous aerial vehicles
Classification algorithms
Data acquisition
Data collection
Deep learning
Deep reinforcement learning
deep reinforcement learning (DRL)
Drones
Energy efficiency
Environmental monitoring
Information age
Internet of Things
Internet of Things (IoT)
Minimization
scheduling
State-of-the-art reviews
Surveys
trajectory
Trajectory optimization
Unmanned aerial vehicles
unmanned aerial vehicles (UAVs)
Wireless sensor networks
wireless sensor networks (WSN)
title Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20AoI%20Minimization%20in%20UAV-Aided%20Data%20Collection%20for%20WSN%20and%20IoT%20Applications:%20A%20Survey&rft.jtitle=IEEE%20access&rft.au=Amodu,%20Oluwatosin%20Ahmed&rft.date=2024&rft.volume=12&rft.spage=108000&rft.epage=108040&rft.pages=108000-108040&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3425497&rft_dat=%3Cproquest_ieee_%3E3090986751%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090986751&rft_id=info:pmid/&rft_ieee_id=10589619&rft_doaj_id=oai_doaj_org_article_8ba0e34121ee415681c73b8c1d29ee30&rfr_iscdi=true