Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles

Green energy vehicles often use technologies that reduce lower inherent noise. However, adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming cars. This poses a major threat to traffic safety. In order to solve this problem, this study initial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.110977-110991
Hauptverfasser: Lyu, Xiang, Wang, Nan, Gao, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110991
container_issue
container_start_page 110977
container_title IEEE access
container_volume 12
creator Lyu, Xiang
Wang, Nan
Gao, Jia
description Green energy vehicles often use technologies that reduce lower inherent noise. However, adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming cars. This poses a major threat to traffic safety. In order to solve this problem, this study initially adopts single frame difference for video frame selection, which reduces the computational load of image processing pipeline. Then, combined with visible and infrared images, this paper uses non-downsampled contourlet transform to achieve glare elimination. Finally, an improved convolutional network is used to detect pedestrians in anti-glare images, and volumetric Kalman filter algorithm is used to track pedestrians. Through these operations, the research establishes a Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System applicable to green energy vehicles. The experimental analysis shows that the designed system can eliminate glare more than 80%, and the pedestrian detection accuracy reaches 95.44%. The constructed system aids green energy vehicles in accurately perceiving their surroundings during nighttime driving, ensuring safe travel.
doi_str_mv 10.1109/ACCESS.2024.3424812
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10589393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589393</ieee_id><doaj_id>oai_doaj_org_article_59f842d7f3974563b696fb227b9ba8b9</doaj_id><sourcerecordid>3096239336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-4a60cc9bb35eab7db7f09b56ca4b285685605b9842aaa300dab034df11c9cc203</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoKOon0IeCz51p_rV51LnNgSA49TXcpDczY2s16R727U2tiOFCwr3n_HLhZNlVSSZlSdTt3XQ6W60mlFA-YZzyuqRH2RktpSqYYPL43_s0u4xxQ9KpU0tUZ1mz8u16i8U8wA7zB-8cBmwtFvcQscmXO1hjPt9H37X5YgsBixeMPvbQ9vkD9mj7YbI6xB53uU-agNjmsxbD-pC_44e3W4wX2YmDbcTL3_s8e5vPXqePxdPzYjm9eyos5bwvOEhirTKGCQRTNaZyRBkhLXBDayFTEWFUzSkAMEIaMITxxpWlVdZSws6z5chtOtjoz-B3EA66A69_Gl1Yawj9sJIWyiVOUzmmKi4kM1JJZyitjDJQG5VYNyPrM3Rfe4y93nT70Kb1NSNKUqYYk0nFRpUNXYwB3d-vJdFDOnpMRw_p6N90kut6dHlE_OcQtRqw33BoitE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096239336</pqid></control><display><type>article</type><title>Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Lyu, Xiang ; Wang, Nan ; Gao, Jia</creator><creatorcontrib>Lyu, Xiang ; Wang, Nan ; Gao, Jia</creatorcontrib><description>Green energy vehicles often use technologies that reduce lower inherent noise. However, adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming cars. This poses a major threat to traffic safety. In order to solve this problem, this study initially adopts single frame difference for video frame selection, which reduces the computational load of image processing pipeline. Then, combined with visible and infrared images, this paper uses non-downsampled contourlet transform to achieve glare elimination. Finally, an improved convolutional network is used to detect pedestrians in anti-glare images, and volumetric Kalman filter algorithm is used to track pedestrians. Through these operations, the research establishes a Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System applicable to green energy vehicles. The experimental analysis shows that the designed system can eliminate glare more than 80%, and the pedestrian detection accuracy reaches 95.44%. The constructed system aids green energy vehicles in accurately perceiving their surroundings during nighttime driving, ensuring safe travel.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3424812</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Alternative energy ; Automobiles ; Clean energy ; Computer vision ; Detection algorithms ; Glare ; glare-free ; Green energy ; Green energy vehicles ; Image color analysis ; Image filters ; Image fusion ; Image processing ; Infrared imagery ; Infrared tracking ; Kalman filters ; Low visibility ; Night vision ; Nighttime construction ; pedestrian detection ; Pedestrians ; Renewable energy ; Safety ; single-frame difference ; Weather</subject><ispartof>IEEE access, 2024, Vol.12, p.110977-110991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-4a60cc9bb35eab7db7f09b56ca4b285685605b9842aaa300dab034df11c9cc203</cites><orcidid>0009-0006-4889-9678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589393$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Lyu, Xiang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><title>Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles</title><title>IEEE access</title><addtitle>Access</addtitle><description>Green energy vehicles often use technologies that reduce lower inherent noise. However, adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming cars. This poses a major threat to traffic safety. In order to solve this problem, this study initially adopts single frame difference for video frame selection, which reduces the computational load of image processing pipeline. Then, combined with visible and infrared images, this paper uses non-downsampled contourlet transform to achieve glare elimination. Finally, an improved convolutional network is used to detect pedestrians in anti-glare images, and volumetric Kalman filter algorithm is used to track pedestrians. Through these operations, the research establishes a Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System applicable to green energy vehicles. The experimental analysis shows that the designed system can eliminate glare more than 80%, and the pedestrian detection accuracy reaches 95.44%. The constructed system aids green energy vehicles in accurately perceiving their surroundings during nighttime driving, ensuring safe travel.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Automobiles</subject><subject>Clean energy</subject><subject>Computer vision</subject><subject>Detection algorithms</subject><subject>Glare</subject><subject>glare-free</subject><subject>Green energy</subject><subject>Green energy vehicles</subject><subject>Image color analysis</subject><subject>Image filters</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Infrared imagery</subject><subject>Infrared tracking</subject><subject>Kalman filters</subject><subject>Low visibility</subject><subject>Night vision</subject><subject>Nighttime construction</subject><subject>pedestrian detection</subject><subject>Pedestrians</subject><subject>Renewable energy</subject><subject>Safety</subject><subject>single-frame difference</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoKOon0IeCz51p_rV51LnNgSA49TXcpDczY2s16R727U2tiOFCwr3n_HLhZNlVSSZlSdTt3XQ6W60mlFA-YZzyuqRH2RktpSqYYPL43_s0u4xxQ9KpU0tUZ1mz8u16i8U8wA7zB-8cBmwtFvcQscmXO1hjPt9H37X5YgsBixeMPvbQ9vkD9mj7YbI6xB53uU-agNjmsxbD-pC_44e3W4wX2YmDbcTL3_s8e5vPXqePxdPzYjm9eyos5bwvOEhirTKGCQRTNaZyRBkhLXBDayFTEWFUzSkAMEIaMITxxpWlVdZSws6z5chtOtjoz-B3EA66A69_Gl1Yawj9sJIWyiVOUzmmKi4kM1JJZyitjDJQG5VYNyPrM3Rfe4y93nT70Kb1NSNKUqYYk0nFRpUNXYwB3d-vJdFDOnpMRw_p6N90kut6dHlE_OcQtRqw33BoitE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lyu, Xiang</creator><creator>Wang, Nan</creator><creator>Gao, Jia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-4889-9678</orcidid></search><sort><creationdate>2024</creationdate><title>Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles</title><author>Lyu, Xiang ; Wang, Nan ; Gao, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-4a60cc9bb35eab7db7f09b56ca4b285685605b9842aaa300dab034df11c9cc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Automobiles</topic><topic>Clean energy</topic><topic>Computer vision</topic><topic>Detection algorithms</topic><topic>Glare</topic><topic>glare-free</topic><topic>Green energy</topic><topic>Green energy vehicles</topic><topic>Image color analysis</topic><topic>Image filters</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Infrared imagery</topic><topic>Infrared tracking</topic><topic>Kalman filters</topic><topic>Low visibility</topic><topic>Night vision</topic><topic>Nighttime construction</topic><topic>pedestrian detection</topic><topic>Pedestrians</topic><topic>Renewable energy</topic><topic>Safety</topic><topic>single-frame difference</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Xiang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Xiang</au><au>Wang, Nan</au><au>Gao, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>110977</spage><epage>110991</epage><pages>110977-110991</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Green energy vehicles often use technologies that reduce lower inherent noise. However, adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming cars. This poses a major threat to traffic safety. In order to solve this problem, this study initially adopts single frame difference for video frame selection, which reduces the computational load of image processing pipeline. Then, combined with visible and infrared images, this paper uses non-downsampled contourlet transform to achieve glare elimination. Finally, an improved convolutional network is used to detect pedestrians in anti-glare images, and volumetric Kalman filter algorithm is used to track pedestrians. Through these operations, the research establishes a Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System applicable to green energy vehicles. The experimental analysis shows that the designed system can eliminate glare more than 80%, and the pedestrian detection accuracy reaches 95.44%. The constructed system aids green energy vehicles in accurately perceiving their surroundings during nighttime driving, ensuring safe travel.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3424812</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-4889-9678</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.110977-110991
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10589393
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Accuracy
Algorithms
Alternative energy
Automobiles
Clean energy
Computer vision
Detection algorithms
Glare
glare-free
Green energy
Green energy vehicles
Image color analysis
Image filters
Image fusion
Image processing
Infrared imagery
Infrared tracking
Kalman filters
Low visibility
Night vision
Nighttime construction
pedestrian detection
Pedestrians
Renewable energy
Safety
single-frame difference
Weather
title Single-Frame Difference-Based Image Fusion Glare-Resistant Detection System in Green Energy Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Frame%20Difference-Based%20Image%20Fusion%20Glare-Resistant%20Detection%20System%20in%20Green%20Energy%20Vehicles&rft.jtitle=IEEE%20access&rft.au=Lyu,%20Xiang&rft.date=2024&rft.volume=12&rft.spage=110977&rft.epage=110991&rft.pages=110977-110991&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3424812&rft_dat=%3Cproquest_ieee_%3E3096239336%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096239336&rft_id=info:pmid/&rft_ieee_id=10589393&rft_doaj_id=oai_doaj_org_article_59f842d7f3974563b696fb227b9ba8b9&rfr_iscdi=true