Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series
Real-time and accurate modeling of environmental variables in a specific region is of great significance to human production activities. In the era of intelligence, there is an increasing demand for accuracy and real-time performance of modeling environmental variables. However, due to the lack of a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Gao, Sheng Meng, Gong Lin, Lianlei Zhang, Zongwei Wang, Junkai Zhao, Hanqing |
description | Real-time and accurate modeling of environmental variables in a specific region is of great significance to human production activities. In the era of intelligence, there is an increasing demand for accuracy and real-time performance of modeling environmental variables. However, due to the lack of a priori knowledge of spatiotemporal features and the high computational complexity, the existing deep learning methods have poor accuracy, and the real-time performance needs to be improved. To solve the above problems, this article proposes a novel SpatioTemporal MultiWaveNet (STMWNet) based on 3-D convolution for end-to-end environmental spatiotemporal variables generation. The Spatiotemporal MultiWave Layer (STMW Layer) is designed based on the principle of wavelet transform to extract multifrequency spatiotemporal features from the series. The multiscale embedding module (MSEM), time infofusion module (TIFM), and embedding integration module (EIM) are proposed to further extract and integrate the spatiotemporal features to improve the accuracy of the model. Considering the short-term and long-term temporal characteristics of spatiotemporal series, the date encoding strategy and the cross-attention head are proposed to integrate relative and absolute date information. The improved loss function is proposed to optimize the model learning. Comparative experiments on three datasets with different physical fields, different spatial scales, and resolutions show that the proposed method can accurately generate the mesoscale environmental spatiotemporal variables in real time for different tasks with the generation error lower than other methods by 1.02%~83.52% on root mean square error (RMSE), and 1.67%~83.68% on mean absolute error (MAE). Further experiments show that the proposed method can maintain its performance in practical applications. |
doi_str_mv | 10.1109/TGRS.2024.3424241 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10587193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10587193</ieee_id><sourcerecordid>10_1109_TGRS_2024_3424241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5861713ce5c18d598fba9ebdfc8b2ce1ff5a9c795a541b924847b63cb2caccc33</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhQdRsFYfQHCRF0idOz_JzFJKTIWqYCuCmzCZ3pGRNAkzsdC3N6VdiNzFXZzzncVHyC3QGQDV9-vybTVjlIkZF2w8OCMTkFKlNBPinEwo6CxlSrNLchXjN6UgJOQT8rnqzeC7Abd9F0yTPP80g_8wO3zBIXFdSArnvPXYDs0-KbHFMNbbr6Rodz507XYMRurfyAqDx3hNLpxpIt6c_pS8Pxbr-SJdvpZP84dlakGoIZUqgxy4RWlBbaRWrjYa642zqmYWwTlptM21NFJArZlQIq8zbsfQWGs5nxI47trQxRjQVX3wWxP2FdDqIKc6yKkOcqqTnJG5OzIeEf_0pcpBc_4LlW1j_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Sheng ; Meng, Gong ; Lin, Lianlei ; Zhang, Zongwei ; Wang, Junkai ; Zhao, Hanqing</creator><creatorcontrib>Gao, Sheng ; Meng, Gong ; Lin, Lianlei ; Zhang, Zongwei ; Wang, Junkai ; Zhao, Hanqing</creatorcontrib><description>Real-time and accurate modeling of environmental variables in a specific region is of great significance to human production activities. In the era of intelligence, there is an increasing demand for accuracy and real-time performance of modeling environmental variables. However, due to the lack of a priori knowledge of spatiotemporal features and the high computational complexity, the existing deep learning methods have poor accuracy, and the real-time performance needs to be improved. To solve the above problems, this article proposes a novel SpatioTemporal MultiWaveNet (STMWNet) based on 3-D convolution for end-to-end environmental spatiotemporal variables generation. The Spatiotemporal MultiWave Layer (STMW Layer) is designed based on the principle of wavelet transform to extract multifrequency spatiotemporal features from the series. The multiscale embedding module (MSEM), time infofusion module (TIFM), and embedding integration module (EIM) are proposed to further extract and integrate the spatiotemporal features to improve the accuracy of the model. Considering the short-term and long-term temporal characteristics of spatiotemporal series, the date encoding strategy and the cross-attention head are proposed to integrate relative and absolute date information. The improved loss function is proposed to optimize the model learning. Comparative experiments on three datasets with different physical fields, different spatial scales, and resolutions show that the proposed method can accurately generate the mesoscale environmental spatiotemporal variables in real time for different tasks with the generation error lower than other methods by 1.02%~83.52% on root mean square error (RMSE), and 1.67%~83.68% on mean absolute error (MAE). Further experiments show that the proposed method can maintain its performance in practical applications.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3424241</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D convolutional neural network (CNN) ; Data models ; deep learning regression ; environmental variables ; Feature extraction ; Mathematical models ; Predictive models ; Spatiotemporal phenomena ; spatiotemporal series generation ; Task analysis ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5861713ce5c18d598fba9ebdfc8b2ce1ff5a9c795a541b924847b63cb2caccc33</cites><orcidid>0009-0006-2921-0097 ; 0000-0002-5827-8692 ; 0000-0002-3726-3416 ; 0000-0001-6916-989X ; 0000-0001-6829-5747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10587193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10587193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Sheng</creatorcontrib><creatorcontrib>Meng, Gong</creatorcontrib><creatorcontrib>Lin, Lianlei</creatorcontrib><creatorcontrib>Zhang, Zongwei</creatorcontrib><creatorcontrib>Wang, Junkai</creatorcontrib><creatorcontrib>Zhao, Hanqing</creatorcontrib><title>Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Real-time and accurate modeling of environmental variables in a specific region is of great significance to human production activities. In the era of intelligence, there is an increasing demand for accuracy and real-time performance of modeling environmental variables. However, due to the lack of a priori knowledge of spatiotemporal features and the high computational complexity, the existing deep learning methods have poor accuracy, and the real-time performance needs to be improved. To solve the above problems, this article proposes a novel SpatioTemporal MultiWaveNet (STMWNet) based on 3-D convolution for end-to-end environmental spatiotemporal variables generation. The Spatiotemporal MultiWave Layer (STMW Layer) is designed based on the principle of wavelet transform to extract multifrequency spatiotemporal features from the series. The multiscale embedding module (MSEM), time infofusion module (TIFM), and embedding integration module (EIM) are proposed to further extract and integrate the spatiotemporal features to improve the accuracy of the model. Considering the short-term and long-term temporal characteristics of spatiotemporal series, the date encoding strategy and the cross-attention head are proposed to integrate relative and absolute date information. The improved loss function is proposed to optimize the model learning. Comparative experiments on three datasets with different physical fields, different spatial scales, and resolutions show that the proposed method can accurately generate the mesoscale environmental spatiotemporal variables in real time for different tasks with the generation error lower than other methods by 1.02%~83.52% on root mean square error (RMSE), and 1.67%~83.68% on mean absolute error (MAE). Further experiments show that the proposed method can maintain its performance in practical applications.</description><subject>3-D convolutional neural network (CNN)</subject><subject>Data models</subject><subject>deep learning regression</subject><subject>environmental variables</subject><subject>Feature extraction</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Spatiotemporal phenomena</subject><subject>spatiotemporal series generation</subject><subject>Task analysis</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Kw0AUhQdRsFYfQHCRF0idOz_JzFJKTIWqYCuCmzCZ3pGRNAkzsdC3N6VdiNzFXZzzncVHyC3QGQDV9-vybTVjlIkZF2w8OCMTkFKlNBPinEwo6CxlSrNLchXjN6UgJOQT8rnqzeC7Abd9F0yTPP80g_8wO3zBIXFdSArnvPXYDs0-KbHFMNbbr6Rodz507XYMRurfyAqDx3hNLpxpIt6c_pS8Pxbr-SJdvpZP84dlakGoIZUqgxy4RWlBbaRWrjYa642zqmYWwTlptM21NFJArZlQIq8zbsfQWGs5nxI47trQxRjQVX3wWxP2FdDqIKc6yKkOcqqTnJG5OzIeEf_0pcpBc_4LlW1j_g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Sheng</creator><creator>Meng, Gong</creator><creator>Lin, Lianlei</creator><creator>Zhang, Zongwei</creator><creator>Wang, Junkai</creator><creator>Zhao, Hanqing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-2921-0097</orcidid><orcidid>https://orcid.org/0000-0002-5827-8692</orcidid><orcidid>https://orcid.org/0000-0002-3726-3416</orcidid><orcidid>https://orcid.org/0000-0001-6916-989X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5747</orcidid></search><sort><creationdate>2024</creationdate><title>Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series</title><author>Gao, Sheng ; Meng, Gong ; Lin, Lianlei ; Zhang, Zongwei ; Wang, Junkai ; Zhao, Hanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5861713ce5c18d598fba9ebdfc8b2ce1ff5a9c795a541b924847b63cb2caccc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D convolutional neural network (CNN)</topic><topic>Data models</topic><topic>deep learning regression</topic><topic>environmental variables</topic><topic>Feature extraction</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Spatiotemporal phenomena</topic><topic>spatiotemporal series generation</topic><topic>Task analysis</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Sheng</creatorcontrib><creatorcontrib>Meng, Gong</creatorcontrib><creatorcontrib>Lin, Lianlei</creatorcontrib><creatorcontrib>Zhang, Zongwei</creatorcontrib><creatorcontrib>Wang, Junkai</creatorcontrib><creatorcontrib>Zhao, Hanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Sheng</au><au>Meng, Gong</au><au>Lin, Lianlei</au><au>Zhang, Zongwei</au><au>Wang, Junkai</au><au>Zhao, Hanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Real-time and accurate modeling of environmental variables in a specific region is of great significance to human production activities. In the era of intelligence, there is an increasing demand for accuracy and real-time performance of modeling environmental variables. However, due to the lack of a priori knowledge of spatiotemporal features and the high computational complexity, the existing deep learning methods have poor accuracy, and the real-time performance needs to be improved. To solve the above problems, this article proposes a novel SpatioTemporal MultiWaveNet (STMWNet) based on 3-D convolution for end-to-end environmental spatiotemporal variables generation. The Spatiotemporal MultiWave Layer (STMW Layer) is designed based on the principle of wavelet transform to extract multifrequency spatiotemporal features from the series. The multiscale embedding module (MSEM), time infofusion module (TIFM), and embedding integration module (EIM) are proposed to further extract and integrate the spatiotemporal features to improve the accuracy of the model. Considering the short-term and long-term temporal characteristics of spatiotemporal series, the date encoding strategy and the cross-attention head are proposed to integrate relative and absolute date information. The improved loss function is proposed to optimize the model learning. Comparative experiments on three datasets with different physical fields, different spatial scales, and resolutions show that the proposed method can accurately generate the mesoscale environmental spatiotemporal variables in real time for different tasks with the generation error lower than other methods by 1.02%~83.52% on root mean square error (RMSE), and 1.67%~83.68% on mean absolute error (MAE). Further experiments show that the proposed method can maintain its performance in practical applications.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3424241</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0006-2921-0097</orcidid><orcidid>https://orcid.org/0000-0002-5827-8692</orcidid><orcidid>https://orcid.org/0000-0002-3726-3416</orcidid><orcidid>https://orcid.org/0000-0001-6916-989X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5747</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10587193 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D convolutional neural network (CNN) Data models deep learning regression environmental variables Feature extraction Mathematical models Predictive models Spatiotemporal phenomena spatiotemporal series generation Task analysis wavelet transform Wavelet transforms |
title | Spatiotemporal MultiWaveNet for Efficiently Generating Environmental Spatiotemporal Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20MultiWaveNet%20for%20Efficiently%20Generating%20Environmental%20Spatiotemporal%20Series&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Gao,%20Sheng&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3424241&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3424241%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10587193&rfr_iscdi=true |