A Multimodal Driver Anger Recognition Method Based on Context-Awareness
In today's society, the harm of driving anger to traffic safety is increasingly prominent. With the development of human-computer interaction and intelligent transportation systems, the application of biometric technology in driver emotion recognition has attracted widespread attention. This st...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.118533-118550 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118550 |
---|---|
container_issue | |
container_start_page | 118533 |
container_title | IEEE access |
container_volume | 12 |
creator | Ding, Tongqiang Zhang, Kexin Gao, Shuai Miao, Xinning Xi, Jianfeng |
description | In today's society, the harm of driving anger to traffic safety is increasingly prominent. With the development of human-computer interaction and intelligent transportation systems, the application of biometric technology in driver emotion recognition has attracted widespread attention. This study proposes a context-aware multi-modal driver anger emotion recognition method (CA-MDER) to address the main issues encountered in multi-modal emotion recognition tasks. These include individual differences among drivers, variability in emotional expression across different driving scenarios, and the inability to capture driving behavior information that represents vehicle-to-vehicle interaction. The method employs Attention Mechanism-Depthwise Separable Convolutional Neural Networks (AM-DSCNN), an improved Support Vector Machines (SVM), and Random Forest (RF) models to perform multi-modal anger emotion recognition using facial, vocal, and driving state information. It also uses Context-Aware Reinforcement Learning (CA-RL) based adaptive weight distribution for multi-modal decision-level fusion. The results show that the proposed method performs well in emotion classification metrics, with an accuracy and F1 score of 91.68% and 90.37%, respectively, demonstrating robust multi-modal emotion recognition performance and powerful emotion recognition capabilities. |
doi_str_mv | 10.1109/ACCESS.2024.3422383 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10583883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583883</ieee_id><doaj_id>oai_doaj_org_article_0c6aafec794a436bb18b0f7624992b0c</doaj_id><sourcerecordid>oai_doaj_org_article_0c6aafec794a436bb18b0f7624992b0c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-974bef5c5a414c2eb743b72a76ab599aecbee32dc595e737e0af7f64e4905eb53</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gV70D3Sm-Wiay1rnHGwITq9Dkp7OjK2RtH79ezM7ZOfifPI-HF6ErjM8zTIsb8uqmq3XU4IJm1JGCC3oGRqRLJcp5TQ_P-kv0aTrtjhGEVdcjNC8TFYfu97tfa13yX1wnxCSst3E_AzWb1rXO98mK-jffJ3c6Q7qJM6Vb3v47tPySwdooeuu0EWjdx1MjnWMXh9mL9VjunyaL6pymdr4RJ9KwQw03HLNMmYJGMGoEUSLXBsupQZrACipLZccBBWAdSOanAGTmIPhdIwWA7f2eqveg9vr8KO8dupv4cNG6dA7uwOFba51A1ZIphnNjckKgxuREyYlMdhGFh1YNviuC9D88zKsDtaqwVp1sFYdrY2qm0HlAOBEwQtaxPMv_5R1cQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multimodal Driver Anger Recognition Method Based on Context-Awareness</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ding, Tongqiang ; Zhang, Kexin ; Gao, Shuai ; Miao, Xinning ; Xi, Jianfeng</creator><creatorcontrib>Ding, Tongqiang ; Zhang, Kexin ; Gao, Shuai ; Miao, Xinning ; Xi, Jianfeng</creatorcontrib><description>In today's society, the harm of driving anger to traffic safety is increasingly prominent. With the development of human-computer interaction and intelligent transportation systems, the application of biometric technology in driver emotion recognition has attracted widespread attention. This study proposes a context-aware multi-modal driver anger emotion recognition method (CA-MDER) to address the main issues encountered in multi-modal emotion recognition tasks. These include individual differences among drivers, variability in emotional expression across different driving scenarios, and the inability to capture driving behavior information that represents vehicle-to-vehicle interaction. The method employs Attention Mechanism-Depthwise Separable Convolutional Neural Networks (AM-DSCNN), an improved Support Vector Machines (SVM), and Random Forest (RF) models to perform multi-modal anger emotion recognition using facial, vocal, and driving state information. It also uses Context-Aware Reinforcement Learning (CA-RL) based adaptive weight distribution for multi-modal decision-level fusion. The results show that the proposed method performs well in emotion classification metrics, with an accuracy and F1 score of 91.68% and 90.37%, respectively, demonstrating robust multi-modal emotion recognition performance and powerful emotion recognition capabilities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3422383</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Context awareness ; Convolutional neural networks ; driving state emotion recognition ; Emotion recognition ; emotional expression heterogeneity ; Face recognition ; Feature extraction ; Heterogeneous networks ; Machine learning ; multimodal emotion recognition ; Speech recognition ; Vehicles</subject><ispartof>IEEE access, 2024, Vol.12, p.118533-118550</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-974bef5c5a414c2eb743b72a76ab599aecbee32dc595e737e0af7f64e4905eb53</cites><orcidid>0000-0002-4488-0850 ; 0000-0002-2212-961X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583883$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,4026,27640,27930,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Ding, Tongqiang</creatorcontrib><creatorcontrib>Zhang, Kexin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Miao, Xinning</creatorcontrib><creatorcontrib>Xi, Jianfeng</creatorcontrib><title>A Multimodal Driver Anger Recognition Method Based on Context-Awareness</title><title>IEEE access</title><addtitle>Access</addtitle><description>In today's society, the harm of driving anger to traffic safety is increasingly prominent. With the development of human-computer interaction and intelligent transportation systems, the application of biometric technology in driver emotion recognition has attracted widespread attention. This study proposes a context-aware multi-modal driver anger emotion recognition method (CA-MDER) to address the main issues encountered in multi-modal emotion recognition tasks. These include individual differences among drivers, variability in emotional expression across different driving scenarios, and the inability to capture driving behavior information that represents vehicle-to-vehicle interaction. The method employs Attention Mechanism-Depthwise Separable Convolutional Neural Networks (AM-DSCNN), an improved Support Vector Machines (SVM), and Random Forest (RF) models to perform multi-modal anger emotion recognition using facial, vocal, and driving state information. It also uses Context-Aware Reinforcement Learning (CA-RL) based adaptive weight distribution for multi-modal decision-level fusion. The results show that the proposed method performs well in emotion classification metrics, with an accuracy and F1 score of 91.68% and 90.37%, respectively, demonstrating robust multi-modal emotion recognition performance and powerful emotion recognition capabilities.</description><subject>Accuracy</subject><subject>Context awareness</subject><subject>Convolutional neural networks</subject><subject>driving state emotion recognition</subject><subject>Emotion recognition</subject><subject>emotional expression heterogeneity</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Heterogeneous networks</subject><subject>Machine learning</subject><subject>multimodal emotion recognition</subject><subject>Speech recognition</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gV70D3Sm-Wiay1rnHGwITq9Dkp7OjK2RtH79ezM7ZOfifPI-HF6ErjM8zTIsb8uqmq3XU4IJm1JGCC3oGRqRLJcp5TQ_P-kv0aTrtjhGEVdcjNC8TFYfu97tfa13yX1wnxCSst3E_AzWb1rXO98mK-jffJ3c6Q7qJM6Vb3v47tPySwdooeuu0EWjdx1MjnWMXh9mL9VjunyaL6pymdr4RJ9KwQw03HLNMmYJGMGoEUSLXBsupQZrACipLZccBBWAdSOanAGTmIPhdIwWA7f2eqveg9vr8KO8dupv4cNG6dA7uwOFba51A1ZIphnNjckKgxuREyYlMdhGFh1YNviuC9D88zKsDtaqwVp1sFYdrY2qm0HlAOBEwQtaxPMv_5R1cQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ding, Tongqiang</creator><creator>Zhang, Kexin</creator><creator>Gao, Shuai</creator><creator>Miao, Xinning</creator><creator>Xi, Jianfeng</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4488-0850</orcidid><orcidid>https://orcid.org/0000-0002-2212-961X</orcidid></search><sort><creationdate>2024</creationdate><title>A Multimodal Driver Anger Recognition Method Based on Context-Awareness</title><author>Ding, Tongqiang ; Zhang, Kexin ; Gao, Shuai ; Miao, Xinning ; Xi, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-974bef5c5a414c2eb743b72a76ab599aecbee32dc595e737e0af7f64e4905eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Context awareness</topic><topic>Convolutional neural networks</topic><topic>driving state emotion recognition</topic><topic>Emotion recognition</topic><topic>emotional expression heterogeneity</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Heterogeneous networks</topic><topic>Machine learning</topic><topic>multimodal emotion recognition</topic><topic>Speech recognition</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Tongqiang</creatorcontrib><creatorcontrib>Zhang, Kexin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Miao, Xinning</creatorcontrib><creatorcontrib>Xi, Jianfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Tongqiang</au><au>Zhang, Kexin</au><au>Gao, Shuai</au><au>Miao, Xinning</au><au>Xi, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Driver Anger Recognition Method Based on Context-Awareness</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>118533</spage><epage>118550</epage><pages>118533-118550</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In today's society, the harm of driving anger to traffic safety is increasingly prominent. With the development of human-computer interaction and intelligent transportation systems, the application of biometric technology in driver emotion recognition has attracted widespread attention. This study proposes a context-aware multi-modal driver anger emotion recognition method (CA-MDER) to address the main issues encountered in multi-modal emotion recognition tasks. These include individual differences among drivers, variability in emotional expression across different driving scenarios, and the inability to capture driving behavior information that represents vehicle-to-vehicle interaction. The method employs Attention Mechanism-Depthwise Separable Convolutional Neural Networks (AM-DSCNN), an improved Support Vector Machines (SVM), and Random Forest (RF) models to perform multi-modal anger emotion recognition using facial, vocal, and driving state information. It also uses Context-Aware Reinforcement Learning (CA-RL) based adaptive weight distribution for multi-modal decision-level fusion. The results show that the proposed method performs well in emotion classification metrics, with an accuracy and F1 score of 91.68% and 90.37%, respectively, demonstrating robust multi-modal emotion recognition performance and powerful emotion recognition capabilities.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3422383</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4488-0850</orcidid><orcidid>https://orcid.org/0000-0002-2212-961X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.118533-118550 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10583883 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Context awareness Convolutional neural networks driving state emotion recognition Emotion recognition emotional expression heterogeneity Face recognition Feature extraction Heterogeneous networks Machine learning multimodal emotion recognition Speech recognition Vehicles |
title | A Multimodal Driver Anger Recognition Method Based on Context-Awareness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Driver%20Anger%20Recognition%20Method%20Based%20on%20Context-Awareness&rft.jtitle=IEEE%20access&rft.au=Ding,%20Tongqiang&rft.date=2024&rft.volume=12&rft.spage=118533&rft.epage=118550&rft.pages=118533-118550&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3422383&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_0c6aafec794a436bb18b0f7624992b0c%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10583883&rft_doaj_id=oai_doaj_org_article_0c6aafec794a436bb18b0f7624992b0c&rfr_iscdi=true |