Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks

Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.93283-93293
Hauptverfasser: Rathnayake, Rasanjalee, Madhushan, Nimantha, Jeeva, Ashmini, Darshani, Dhanushika, Pathirana, Imesh, Ghosh, Sourin, Subasinghe, Akila, Silva, Bhagya Nathali, Wijenayake, Udaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93293
container_issue
container_start_page 93283
container_title IEEE access
container_volume 12
creator Rathnayake, Rasanjalee
Madhushan, Nimantha
Jeeva, Ashmini
Darshani, Dhanushika
Pathirana, Imesh
Ghosh, Sourin
Subasinghe, Akila
Silva, Bhagya Nathali
Wijenayake, Udaya
description Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.
doi_str_mv 10.1109/ACCESS.2024.3422807
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10583862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583862</ieee_id><doaj_id>oai_doaj_org_article_0282226f1ef34ddda418ed0be4a0b3bd</doaj_id><sourcerecordid>3078087191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</originalsourceid><addsrcrecordid>eNpNUU1r20AQFaWFhjS_IDks9Cx3vySNjkF1W0OaQOyel_0YmXVlr7srJU1_fddRCJnLDI_33szwiuKS0QVjtP1y3XXL9XrBKZcLITkH2rwrzjir21JUon7_Zv5YXKS0o7kgQ1VzVuzuUQ_lxu-R_JyG0ZfrI9ox6oGsok9k-TfPdvThQPyBfPUPGJPvPTqyfEKy2ustJvJr9IP_5w9b0oXDQximEz873OIUn9v4GOLv9Kn40Osh4cVLPy8235ab7kd5c_d91V3flJZDO5a8aqA1kjorJG1AoKhb1JJX4HrNtRHAaWt1bQAllZY1zIBpDYAF3VRCnBer2dYFvVPH6Pc6PqmgvXoGQtwqHUdvB1SUA-e87hn2QjrntGSAjhqUmhphXPb6PHsdY_gzYRrVLkwx_5aUyLdRaFjLMkvMLBtDShH7162MqlNEao5InSJSLxFl1dWs8oj4RlGBgJqL_3DpjYI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078087191</pqid></control><display><type>article</type><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</creator><creatorcontrib>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</creatorcontrib><description>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3422807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; circular Hough transformation ; Convolutional neural networks ; Costs ; Feature extraction ; Hough transformation ; Human computer interaction ; Image enhancement ; Image segmentation ; Iris extraction ; Iris recognition ; Machine learning ; Real time ; Real-time systems ; Webcams</subject><ispartof>IEEE access, 2024, Vol.12, p.93283-93293</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</cites><orcidid>0000-0002-3267-3854 ; 0009-0004-8098-2522 ; 0000-0002-8545-943X ; 0000-0002-1329-762X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583862$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rathnayake, Rasanjalee</creatorcontrib><creatorcontrib>Madhushan, Nimantha</creatorcontrib><creatorcontrib>Jeeva, Ashmini</creatorcontrib><creatorcontrib>Darshani, Dhanushika</creatorcontrib><creatorcontrib>Pathirana, Imesh</creatorcontrib><creatorcontrib>Ghosh, Sourin</creatorcontrib><creatorcontrib>Subasinghe, Akila</creatorcontrib><creatorcontrib>Silva, Bhagya Nathali</creatorcontrib><creatorcontrib>Wijenayake, Udaya</creatorcontrib><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>circular Hough transformation</subject><subject>Convolutional neural networks</subject><subject>Costs</subject><subject>Feature extraction</subject><subject>Hough transformation</subject><subject>Human computer interaction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Iris extraction</subject><subject>Iris recognition</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Webcams</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r20AQFaWFhjS_IDks9Cx3vySNjkF1W0OaQOyel_0YmXVlr7srJU1_fddRCJnLDI_33szwiuKS0QVjtP1y3XXL9XrBKZcLITkH2rwrzjir21JUon7_Zv5YXKS0o7kgQ1VzVuzuUQ_lxu-R_JyG0ZfrI9ox6oGsok9k-TfPdvThQPyBfPUPGJPvPTqyfEKy2ustJvJr9IP_5w9b0oXDQximEz873OIUn9v4GOLv9Kn40Osh4cVLPy8235ab7kd5c_d91V3flJZDO5a8aqA1kjorJG1AoKhb1JJX4HrNtRHAaWt1bQAllZY1zIBpDYAF3VRCnBer2dYFvVPH6Pc6PqmgvXoGQtwqHUdvB1SUA-e87hn2QjrntGSAjhqUmhphXPb6PHsdY_gzYRrVLkwx_5aUyLdRaFjLMkvMLBtDShH7162MqlNEao5InSJSLxFl1dWs8oj4RlGBgJqL_3DpjYI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rathnayake, Rasanjalee</creator><creator>Madhushan, Nimantha</creator><creator>Jeeva, Ashmini</creator><creator>Darshani, Dhanushika</creator><creator>Pathirana, Imesh</creator><creator>Ghosh, Sourin</creator><creator>Subasinghe, Akila</creator><creator>Silva, Bhagya Nathali</creator><creator>Wijenayake, Udaya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3267-3854</orcidid><orcidid>https://orcid.org/0009-0004-8098-2522</orcidid><orcidid>https://orcid.org/0000-0002-8545-943X</orcidid><orcidid>https://orcid.org/0000-0002-1329-762X</orcidid></search><sort><creationdate>2024</creationdate><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><author>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>circular Hough transformation</topic><topic>Convolutional neural networks</topic><topic>Costs</topic><topic>Feature extraction</topic><topic>Hough transformation</topic><topic>Human computer interaction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Iris extraction</topic><topic>Iris recognition</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Webcams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathnayake, Rasanjalee</creatorcontrib><creatorcontrib>Madhushan, Nimantha</creatorcontrib><creatorcontrib>Jeeva, Ashmini</creatorcontrib><creatorcontrib>Darshani, Dhanushika</creatorcontrib><creatorcontrib>Pathirana, Imesh</creatorcontrib><creatorcontrib>Ghosh, Sourin</creatorcontrib><creatorcontrib>Subasinghe, Akila</creatorcontrib><creatorcontrib>Silva, Bhagya Nathali</creatorcontrib><creatorcontrib>Wijenayake, Udaya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathnayake, Rasanjalee</au><au>Madhushan, Nimantha</au><au>Jeeva, Ashmini</au><au>Darshani, Dhanushika</au><au>Pathirana, Imesh</au><au>Ghosh, Sourin</au><au>Subasinghe, Akila</au><au>Silva, Bhagya Nathali</au><au>Wijenayake, Udaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93283</spage><epage>93293</epage><pages>93283-93293</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3422807</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3267-3854</orcidid><orcidid>https://orcid.org/0009-0004-8098-2522</orcidid><orcidid>https://orcid.org/0000-0002-8545-943X</orcidid><orcidid>https://orcid.org/0000-0002-1329-762X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.93283-93293
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10583862
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Artificial neural networks
circular Hough transformation
Convolutional neural networks
Costs
Feature extraction
Hough transformation
Human computer interaction
Image enhancement
Image segmentation
Iris extraction
Iris recognition
Machine learning
Real time
Real-time systems
Webcams
title Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Multi-Spectral%20Iris%20Extraction%20in%20Diversified%20Eye%20Images%20Utilizing%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Rathnayake,%20Rasanjalee&rft.date=2024&rft.volume=12&rft.spage=93283&rft.epage=93293&rft.pages=93283-93293&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3422807&rft_dat=%3Cproquest_ieee_%3E3078087191%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078087191&rft_id=info:pmid/&rft_ieee_id=10583862&rft_doaj_id=oai_doaj_org_article_0282226f1ef34ddda418ed0be4a0b3bd&rfr_iscdi=true