Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks
Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and perfor...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.93283-93293 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93293 |
---|---|
container_issue | |
container_start_page | 93283 |
container_title | IEEE access |
container_volume | 12 |
creator | Rathnayake, Rasanjalee Madhushan, Nimantha Jeeva, Ashmini Darshani, Dhanushika Pathirana, Imesh Ghosh, Sourin Subasinghe, Akila Silva, Bhagya Nathali Wijenayake, Udaya |
description | Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains. |
doi_str_mv | 10.1109/ACCESS.2024.3422807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10583862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583862</ieee_id><doaj_id>oai_doaj_org_article_0282226f1ef34ddda418ed0be4a0b3bd</doaj_id><sourcerecordid>3078087191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</originalsourceid><addsrcrecordid>eNpNUU1r20AQFaWFhjS_IDks9Cx3vySNjkF1W0OaQOyel_0YmXVlr7srJU1_fddRCJnLDI_33szwiuKS0QVjtP1y3XXL9XrBKZcLITkH2rwrzjir21JUon7_Zv5YXKS0o7kgQ1VzVuzuUQ_lxu-R_JyG0ZfrI9ox6oGsok9k-TfPdvThQPyBfPUPGJPvPTqyfEKy2ustJvJr9IP_5w9b0oXDQximEz873OIUn9v4GOLv9Kn40Osh4cVLPy8235ab7kd5c_d91V3flJZDO5a8aqA1kjorJG1AoKhb1JJX4HrNtRHAaWt1bQAllZY1zIBpDYAF3VRCnBer2dYFvVPH6Pc6PqmgvXoGQtwqHUdvB1SUA-e87hn2QjrntGSAjhqUmhphXPb6PHsdY_gzYRrVLkwx_5aUyLdRaFjLMkvMLBtDShH7162MqlNEao5InSJSLxFl1dWs8oj4RlGBgJqL_3DpjYI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078087191</pqid></control><display><type>article</type><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</creator><creatorcontrib>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</creatorcontrib><description>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3422807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; circular Hough transformation ; Convolutional neural networks ; Costs ; Feature extraction ; Hough transformation ; Human computer interaction ; Image enhancement ; Image segmentation ; Iris extraction ; Iris recognition ; Machine learning ; Real time ; Real-time systems ; Webcams</subject><ispartof>IEEE access, 2024, Vol.12, p.93283-93293</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</cites><orcidid>0000-0002-3267-3854 ; 0009-0004-8098-2522 ; 0000-0002-8545-943X ; 0000-0002-1329-762X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583862$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rathnayake, Rasanjalee</creatorcontrib><creatorcontrib>Madhushan, Nimantha</creatorcontrib><creatorcontrib>Jeeva, Ashmini</creatorcontrib><creatorcontrib>Darshani, Dhanushika</creatorcontrib><creatorcontrib>Pathirana, Imesh</creatorcontrib><creatorcontrib>Ghosh, Sourin</creatorcontrib><creatorcontrib>Subasinghe, Akila</creatorcontrib><creatorcontrib>Silva, Bhagya Nathali</creatorcontrib><creatorcontrib>Wijenayake, Udaya</creatorcontrib><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>circular Hough transformation</subject><subject>Convolutional neural networks</subject><subject>Costs</subject><subject>Feature extraction</subject><subject>Hough transformation</subject><subject>Human computer interaction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Iris extraction</subject><subject>Iris recognition</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Webcams</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r20AQFaWFhjS_IDks9Cx3vySNjkF1W0OaQOyel_0YmXVlr7srJU1_fddRCJnLDI_33szwiuKS0QVjtP1y3XXL9XrBKZcLITkH2rwrzjir21JUon7_Zv5YXKS0o7kgQ1VzVuzuUQ_lxu-R_JyG0ZfrI9ox6oGsok9k-TfPdvThQPyBfPUPGJPvPTqyfEKy2ustJvJr9IP_5w9b0oXDQximEz873OIUn9v4GOLv9Kn40Osh4cVLPy8235ab7kd5c_d91V3flJZDO5a8aqA1kjorJG1AoKhb1JJX4HrNtRHAaWt1bQAllZY1zIBpDYAF3VRCnBer2dYFvVPH6Pc6PqmgvXoGQtwqHUdvB1SUA-e87hn2QjrntGSAjhqUmhphXPb6PHsdY_gzYRrVLkwx_5aUyLdRaFjLMkvMLBtDShH7162MqlNEao5InSJSLxFl1dWs8oj4RlGBgJqL_3DpjYI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rathnayake, Rasanjalee</creator><creator>Madhushan, Nimantha</creator><creator>Jeeva, Ashmini</creator><creator>Darshani, Dhanushika</creator><creator>Pathirana, Imesh</creator><creator>Ghosh, Sourin</creator><creator>Subasinghe, Akila</creator><creator>Silva, Bhagya Nathali</creator><creator>Wijenayake, Udaya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3267-3854</orcidid><orcidid>https://orcid.org/0009-0004-8098-2522</orcidid><orcidid>https://orcid.org/0000-0002-8545-943X</orcidid><orcidid>https://orcid.org/0000-0002-1329-762X</orcidid></search><sort><creationdate>2024</creationdate><title>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</title><author>Rathnayake, Rasanjalee ; Madhushan, Nimantha ; Jeeva, Ashmini ; Darshani, Dhanushika ; Pathirana, Imesh ; Ghosh, Sourin ; Subasinghe, Akila ; Silva, Bhagya Nathali ; Wijenayake, Udaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-25789b40dc340783e369ea4258dfa2ab38209ca6b8e404c171b8b9b88c8a7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>circular Hough transformation</topic><topic>Convolutional neural networks</topic><topic>Costs</topic><topic>Feature extraction</topic><topic>Hough transformation</topic><topic>Human computer interaction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Iris extraction</topic><topic>Iris recognition</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Webcams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathnayake, Rasanjalee</creatorcontrib><creatorcontrib>Madhushan, Nimantha</creatorcontrib><creatorcontrib>Jeeva, Ashmini</creatorcontrib><creatorcontrib>Darshani, Dhanushika</creatorcontrib><creatorcontrib>Pathirana, Imesh</creatorcontrib><creatorcontrib>Ghosh, Sourin</creatorcontrib><creatorcontrib>Subasinghe, Akila</creatorcontrib><creatorcontrib>Silva, Bhagya Nathali</creatorcontrib><creatorcontrib>Wijenayake, Udaya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathnayake, Rasanjalee</au><au>Madhushan, Nimantha</au><au>Jeeva, Ashmini</au><au>Darshani, Dhanushika</au><au>Pathirana, Imesh</au><au>Ghosh, Sourin</au><au>Subasinghe, Akila</au><au>Silva, Bhagya Nathali</au><au>Wijenayake, Udaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93283</spage><epage>93293</epage><pages>93283-93293</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Iris extraction has gained prominence due to its application versatility across many domains. However, achieving real-time iris extraction poses challenges due to several factors. Learning-based algorithms outperform non-learning-based iris extraction methods, delivering superior accuracy and performance. In response, this article proposes a Convolutional Neural Networks (CNN)-based, accurate direct iris extraction mechanism for a broad spectrum of eye images. The innovation of our approach lies in its proficiency with varied image types, including those where the iris is partially obscured by the eyelid. We enhance the method's reliability by introducing a modified Circular Hough Transform (CHT). Extensive testing demonstrates our method's excellent real-time performance across diverse image types, even under challenging conditions. These findings underscore the proposed method's potential as a cost-effective and computationally efficient solution for real-time iris extraction in varied application domains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3422807</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3267-3854</orcidid><orcidid>https://orcid.org/0009-0004-8098-2522</orcidid><orcidid>https://orcid.org/0000-0002-8545-943X</orcidid><orcidid>https://orcid.org/0000-0002-1329-762X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.93283-93293 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10583862 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Artificial neural networks circular Hough transformation Convolutional neural networks Costs Feature extraction Hough transformation Human computer interaction Image enhancement Image segmentation Iris extraction Iris recognition Machine learning Real time Real-time systems Webcams |
title | Real-Time Multi-Spectral Iris Extraction in Diversified Eye Images Utilizing Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Multi-Spectral%20Iris%20Extraction%20in%20Diversified%20Eye%20Images%20Utilizing%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Rathnayake,%20Rasanjalee&rft.date=2024&rft.volume=12&rft.spage=93283&rft.epage=93293&rft.pages=93283-93293&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3422807&rft_dat=%3Cproquest_ieee_%3E3078087191%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078087191&rft_id=info:pmid/&rft_ieee_id=10583862&rft_doaj_id=oai_doaj_org_article_0282226f1ef34ddda418ed0be4a0b3bd&rfr_iscdi=true |