A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor
This paper presents an improved subdomain model for predicting the open-circuit magnetic field of a permanent magnet synchronous linear motor (PMSLM), taking into consideration the axial array and primary end effects. The improved subdomain model involves treating the permanent magnet as a secondary...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.91242-91251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91251 |
---|---|
container_issue | |
container_start_page | 91242 |
container_title | IEEE access |
container_volume | 12 |
creator | Yang, Yuxin Wu, Qingle |
description | This paper presents an improved subdomain model for predicting the open-circuit magnetic field of a permanent magnet synchronous linear motor (PMSLM), taking into consideration the axial array and primary end effects. The improved subdomain model involves treating the permanent magnet as a secondary core with infinite permeability covered by a current layer in lieu of the actual magnetic source, which is then solved using the equivalent magnetic circuit method. Additionally, the model employs coordinate transformation (i.e., converting from a Cartesian coordinate system to a polar coordinate system) to establish a subdomain model in the polar coordinate system. This approach significantly reduces the number of subdomain division regions and effectively alleviates programming and computational complexities compared to conventional subdomain models. The accuracy of the analysis results is confirmed through finite element method validation. The findings demonstrate that the proposed improved subdomain model significantly enhances computational efficiency without sacrificing accuracy. By applying the proposed method, the motor structure is also improved. Specifically, compared to the structure before improvement, the end force of the motor decreases by 42.41%, while the rated thrust increases by 38.59%. These improvements contribute to an overall enhancement in motor performance. |
doi_str_mv | 10.1109/ACCESS.2024.3421627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10579751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10579751</ieee_id><doaj_id>oai_doaj_org_article_f5175cc6e09c42a881b49824a3c5166b</doaj_id><sourcerecordid>3076061618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ed9e233d272d536129f184981f763b696481faafc9d9eea84c9824b63bdb001f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-BHgKeW_O12c1xKX4UWhRazyGbndgtdaOzKdh_b9YtYi4z8968l4GXZTeMThmj-r6azR5WqymnXE6F5Ezx4iS7SFVPRC7U6b_-PLvu-y1Nr0xQXlxkm4o82j6SV4SmdbENHVlC3ISG-IBkvcH9QAKm6cN2DkjwpPpu7Y5UiPYwUAmHLpKlfe8gktWhcxsMXdj3ZNF2YJEsQwx4lZ15u-vh-lgvs7fHh_XsebJ4eZrPqsXEcSnjBBoNXIiGF7xJBzOuPSulLpkvlKiVVjK11nqn0yLYUjpdclknrqkpZV5cZvPRtwl2az6x_bB4MMG25hcI-G4sxtbtwPicFblzCqh2ktuyZLUc3KxwOVOqTl53o9cnhq899NFswx67dL4RtFBUMcXKtCXGLYeh7xH836-MmiEhMyZkhoTMMaGkuh1VLQD8U-SFLnImfgC1g4vp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076061618</pqid></control><display><type>article</type><title>A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Yuxin ; Wu, Qingle</creator><creatorcontrib>Yang, Yuxin ; Wu, Qingle</creatorcontrib><description>This paper presents an improved subdomain model for predicting the open-circuit magnetic field of a permanent magnet synchronous linear motor (PMSLM), taking into consideration the axial array and primary end effects. The improved subdomain model involves treating the permanent magnet as a secondary core with infinite permeability covered by a current layer in lieu of the actual magnetic source, which is then solved using the equivalent magnetic circuit method. Additionally, the model employs coordinate transformation (i.e., converting from a Cartesian coordinate system to a polar coordinate system) to establish a subdomain model in the polar coordinate system. This approach significantly reduces the number of subdomain division regions and effectively alleviates programming and computational complexities compared to conventional subdomain models. The accuracy of the analysis results is confirmed through finite element method validation. The findings demonstrate that the proposed improved subdomain model significantly enhances computational efficiency without sacrificing accuracy. By applying the proposed method, the motor structure is also improved. Specifically, compared to the structure before improvement, the end force of the motor decreases by 42.41%, while the rated thrust increases by 38.59%. These improvements contribute to an overall enhancement in motor performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3421627</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Air gaps ; Analytical models ; Arrays ; Atmospheric modeling ; Cartesian coordinates ; Computational modeling ; Coordinate transformations ; Electric motors ; Electromagnetic compatibility ; end effect ; Equivalent circuits ; equivalent magnetic circuit ; Finite element method ; Linear motor ; Magnetic circuits ; magnetic field ; Motors ; Permanent magnets ; Permeability ; Polar coordinate models ; subdomain model ; Thrust</subject><ispartof>IEEE access, 2024, Vol.12, p.91242-91251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ed9e233d272d536129f184981f763b696481faafc9d9eea84c9824b63bdb001f3</cites><orcidid>0009-0001-0844-9203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10579751$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yang, Yuxin</creatorcontrib><creatorcontrib>Wu, Qingle</creatorcontrib><title>A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an improved subdomain model for predicting the open-circuit magnetic field of a permanent magnet synchronous linear motor (PMSLM), taking into consideration the axial array and primary end effects. The improved subdomain model involves treating the permanent magnet as a secondary core with infinite permeability covered by a current layer in lieu of the actual magnetic source, which is then solved using the equivalent magnetic circuit method. Additionally, the model employs coordinate transformation (i.e., converting from a Cartesian coordinate system to a polar coordinate system) to establish a subdomain model in the polar coordinate system. This approach significantly reduces the number of subdomain division regions and effectively alleviates programming and computational complexities compared to conventional subdomain models. The accuracy of the analysis results is confirmed through finite element method validation. The findings demonstrate that the proposed improved subdomain model significantly enhances computational efficiency without sacrificing accuracy. By applying the proposed method, the motor structure is also improved. Specifically, compared to the structure before improvement, the end force of the motor decreases by 42.41%, while the rated thrust increases by 38.59%. These improvements contribute to an overall enhancement in motor performance.</description><subject>Accuracy</subject><subject>Air gaps</subject><subject>Analytical models</subject><subject>Arrays</subject><subject>Atmospheric modeling</subject><subject>Cartesian coordinates</subject><subject>Computational modeling</subject><subject>Coordinate transformations</subject><subject>Electric motors</subject><subject>Electromagnetic compatibility</subject><subject>end effect</subject><subject>Equivalent circuits</subject><subject>equivalent magnetic circuit</subject><subject>Finite element method</subject><subject>Linear motor</subject><subject>Magnetic circuits</subject><subject>magnetic field</subject><subject>Motors</subject><subject>Permanent magnets</subject><subject>Permeability</subject><subject>Polar coordinate models</subject><subject>subdomain model</subject><subject>Thrust</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-BHgKeW_O12c1xKX4UWhRazyGbndgtdaOzKdh_b9YtYi4z8968l4GXZTeMThmj-r6azR5WqymnXE6F5Ezx4iS7SFVPRC7U6b_-PLvu-y1Nr0xQXlxkm4o82j6SV4SmdbENHVlC3ISG-IBkvcH9QAKm6cN2DkjwpPpu7Y5UiPYwUAmHLpKlfe8gktWhcxsMXdj3ZNF2YJEsQwx4lZ15u-vh-lgvs7fHh_XsebJ4eZrPqsXEcSnjBBoNXIiGF7xJBzOuPSulLpkvlKiVVjK11nqn0yLYUjpdclknrqkpZV5cZvPRtwl2az6x_bB4MMG25hcI-G4sxtbtwPicFblzCqh2ktuyZLUc3KxwOVOqTl53o9cnhq899NFswx67dL4RtFBUMcXKtCXGLYeh7xH836-MmiEhMyZkhoTMMaGkuh1VLQD8U-SFLnImfgC1g4vp</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Yuxin</creator><creator>Wu, Qingle</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0844-9203</orcidid></search><sort><creationdate>2024</creationdate><title>A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor</title><author>Yang, Yuxin ; Wu, Qingle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ed9e233d272d536129f184981f763b696481faafc9d9eea84c9824b63bdb001f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Air gaps</topic><topic>Analytical models</topic><topic>Arrays</topic><topic>Atmospheric modeling</topic><topic>Cartesian coordinates</topic><topic>Computational modeling</topic><topic>Coordinate transformations</topic><topic>Electric motors</topic><topic>Electromagnetic compatibility</topic><topic>end effect</topic><topic>Equivalent circuits</topic><topic>equivalent magnetic circuit</topic><topic>Finite element method</topic><topic>Linear motor</topic><topic>Magnetic circuits</topic><topic>magnetic field</topic><topic>Motors</topic><topic>Permanent magnets</topic><topic>Permeability</topic><topic>Polar coordinate models</topic><topic>subdomain model</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuxin</creatorcontrib><creatorcontrib>Wu, Qingle</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuxin</au><au>Wu, Qingle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>91242</spage><epage>91251</epage><pages>91242-91251</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an improved subdomain model for predicting the open-circuit magnetic field of a permanent magnet synchronous linear motor (PMSLM), taking into consideration the axial array and primary end effects. The improved subdomain model involves treating the permanent magnet as a secondary core with infinite permeability covered by a current layer in lieu of the actual magnetic source, which is then solved using the equivalent magnetic circuit method. Additionally, the model employs coordinate transformation (i.e., converting from a Cartesian coordinate system to a polar coordinate system) to establish a subdomain model in the polar coordinate system. This approach significantly reduces the number of subdomain division regions and effectively alleviates programming and computational complexities compared to conventional subdomain models. The accuracy of the analysis results is confirmed through finite element method validation. The findings demonstrate that the proposed improved subdomain model significantly enhances computational efficiency without sacrificing accuracy. By applying the proposed method, the motor structure is also improved. Specifically, compared to the structure before improvement, the end force of the motor decreases by 42.41%, while the rated thrust increases by 38.59%. These improvements contribute to an overall enhancement in motor performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3421627</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-0844-9203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.91242-91251 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10579751 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Accuracy Air gaps Analytical models Arrays Atmospheric modeling Cartesian coordinates Computational modeling Coordinate transformations Electric motors Electromagnetic compatibility end effect Equivalent circuits equivalent magnetic circuit Finite element method Linear motor Magnetic circuits magnetic field Motors Permanent magnets Permeability Polar coordinate models subdomain model Thrust |
title | A Fast Prediction Method for Thrust Performance of Axial Array Permanent Magnet Synchronous Linear Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Prediction%20Method%20for%20Thrust%20Performance%20of%20Axial%20Array%20Permanent%20Magnet%20Synchronous%20Linear%20Motor&rft.jtitle=IEEE%20access&rft.au=Yang,%20Yuxin&rft.date=2024&rft.volume=12&rft.spage=91242&rft.epage=91251&rft.pages=91242-91251&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3421627&rft_dat=%3Cproquest_ieee_%3E3076061618%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076061618&rft_id=info:pmid/&rft_ieee_id=10579751&rft_doaj_id=oai_doaj_org_article_f5175cc6e09c42a881b49824a3c5166b&rfr_iscdi=true |