Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems

Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2025-01, Vol.40 (1), p.1049-1059
Hauptverfasser: Wang, Zijun, Liu, Yang, Yu, Nanpeng, Wu, Qinqin, Wu, Jiang, Zhou, Yadong, Liu, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 1
container_start_page 1049
container_title IEEE transactions on power systems
container_volume 40
creator Wang, Zijun
Liu, Yang
Yu, Nanpeng
Wu, Qinqin
Wu, Jiang
Zhou, Yadong
Liu, Ting
description Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.
doi_str_mv 10.1109/TPWRS.2024.3420118
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10574353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10574353</ieee_id><sourcerecordid>3152763191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</originalsourceid><addsrcrecordid>eNpNkEFPwjAUgBujiYj-AeOhiefha7uuqzeCoiQYiWCMp6Z0b2FkbNgODf_eTTh4eof3fe8lHyHXDAaMgb5bzD7e5gMOPB6ImANj6QnpMSnTCBKlT0kP0lRGqZZwTi5CWANA0i565PPBNpZOqhw9Vg7p2NcbOtsty8KVezr8tkVplyXSDruni5VH2wRqq4w-YI5VQPqCzarOAi0qOqt_0NP5PjS4CZfkLLdlwKvj7JP38eNi9BxNX58mo-E0cjxWTRTn2mVaq0RKpRxHVDJDmUFiWZYAZC5hgoGyS5lq5WApWOq44nHSeTHnok9uD3e3vv7aYWjMut75qn1pBJNcJYJp1lL8QDlfh-AxN1tfbKzfGwamS2j-EpouoTkmbKWbg1Qg4j9BqlhIIX4Bs3psMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152763191</pqid></control><display><type>article</type><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</creator><creatorcontrib>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</creatorcontrib><description>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2024.3420118</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Availability ; data disclosure ; Electricity ; Electricity pricing ; Electricity supply industry ; grid topology ; Inference ; Inference threat ; Load flow ; locational marginal price (LMP) ; maximum inference threat ; Network topologies ; Power grids ; Power systems ; Privacy ; R&amp;D ; Research &amp; development ; smart grid security ; Threat evaluation ; Topology</subject><ispartof>IEEE transactions on power systems, 2025-01, Vol.40 (1), p.1049-1059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</cites><orcidid>0000-0002-4075-1971 ; 0000-0002-7600-0934 ; 0000-0001-5086-5465 ; 0009-0008-9836-2726 ; 0000-0003-0345-3518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10574353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10574353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zijun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><creatorcontrib>Wu, Qinqin</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</description><subject>Admittance</subject><subject>Availability</subject><subject>data disclosure</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>grid topology</subject><subject>Inference</subject><subject>Inference threat</subject><subject>Load flow</subject><subject>locational marginal price (LMP)</subject><subject>maximum inference threat</subject><subject>Network topologies</subject><subject>Power grids</subject><subject>Power systems</subject><subject>Privacy</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>smart grid security</subject><subject>Threat evaluation</subject><subject>Topology</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwjAUgBujiYj-AeOhiefha7uuqzeCoiQYiWCMp6Z0b2FkbNgODf_eTTh4eof3fe8lHyHXDAaMgb5bzD7e5gMOPB6ImANj6QnpMSnTCBKlT0kP0lRGqZZwTi5CWANA0i565PPBNpZOqhw9Vg7p2NcbOtsty8KVezr8tkVplyXSDruni5VH2wRqq4w-YI5VQPqCzarOAi0qOqt_0NP5PjS4CZfkLLdlwKvj7JP38eNi9BxNX58mo-E0cjxWTRTn2mVaq0RKpRxHVDJDmUFiWZYAZC5hgoGyS5lq5WApWOq44nHSeTHnok9uD3e3vv7aYWjMut75qn1pBJNcJYJp1lL8QDlfh-AxN1tfbKzfGwamS2j-EpouoTkmbKWbg1Qg4j9BqlhIIX4Bs3psMg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Wang, Zijun</creator><creator>Liu, Yang</creator><creator>Yu, Nanpeng</creator><creator>Wu, Qinqin</creator><creator>Wu, Jiang</creator><creator>Zhou, Yadong</creator><creator>Liu, Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4075-1971</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid><orcidid>https://orcid.org/0009-0008-9836-2726</orcidid><orcidid>https://orcid.org/0000-0003-0345-3518</orcidid></search><sort><creationdate>20250101</creationdate><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><author>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Admittance</topic><topic>Availability</topic><topic>data disclosure</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>grid topology</topic><topic>Inference</topic><topic>Inference threat</topic><topic>Load flow</topic><topic>locational marginal price (LMP)</topic><topic>maximum inference threat</topic><topic>Network topologies</topic><topic>Power grids</topic><topic>Power systems</topic><topic>Privacy</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>smart grid security</topic><topic>Threat evaluation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zijun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><creatorcontrib>Wu, Qinqin</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zijun</au><au>Liu, Yang</au><au>Yu, Nanpeng</au><au>Wu, Qinqin</au><au>Wu, Jiang</au><au>Zhou, Yadong</au><au>Liu, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>1049</spage><epage>1059</epage><pages>1049-1059</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2024.3420118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4075-1971</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid><orcidid>https://orcid.org/0009-0008-9836-2726</orcidid><orcidid>https://orcid.org/0000-0003-0345-3518</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2025-01, Vol.40 (1), p.1049-1059
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_10574353
source IEEE Electronic Library (IEL)
subjects Admittance
Availability
data disclosure
Electricity
Electricity pricing
Electricity supply industry
grid topology
Inference
Inference threat
Load flow
locational marginal price (LMP)
maximum inference threat
Network topologies
Power grids
Power systems
Privacy
R&D
Research & development
smart grid security
Threat evaluation
Topology
title Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Inference%20From%20Publicly%20Available%20Data:%20Threats%20and%20Defense%20Methods%20in%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wang,%20Zijun&rft.date=2025-01-01&rft.volume=40&rft.issue=1&rft.spage=1049&rft.epage=1059&rft.pages=1049-1059&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2024.3420118&rft_dat=%3Cproquest_RIE%3E3152763191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152763191&rft_id=info:pmid/&rft_ieee_id=10574353&rfr_iscdi=true