Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems
Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2025-01, Vol.40 (1), p.1049-1059 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1059 |
---|---|
container_issue | 1 |
container_start_page | 1049 |
container_title | IEEE transactions on power systems |
container_volume | 40 |
creator | Wang, Zijun Liu, Yang Yu, Nanpeng Wu, Qinqin Wu, Jiang Zhou, Yadong Liu, Ting |
description | Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems. |
doi_str_mv | 10.1109/TPWRS.2024.3420118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10574353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10574353</ieee_id><sourcerecordid>3152763191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</originalsourceid><addsrcrecordid>eNpNkEFPwjAUgBujiYj-AeOhiefha7uuqzeCoiQYiWCMp6Z0b2FkbNgODf_eTTh4eof3fe8lHyHXDAaMgb5bzD7e5gMOPB6ImANj6QnpMSnTCBKlT0kP0lRGqZZwTi5CWANA0i565PPBNpZOqhw9Vg7p2NcbOtsty8KVezr8tkVplyXSDruni5VH2wRqq4w-YI5VQPqCzarOAi0qOqt_0NP5PjS4CZfkLLdlwKvj7JP38eNi9BxNX58mo-E0cjxWTRTn2mVaq0RKpRxHVDJDmUFiWZYAZC5hgoGyS5lq5WApWOq44nHSeTHnok9uD3e3vv7aYWjMut75qn1pBJNcJYJp1lL8QDlfh-AxN1tfbKzfGwamS2j-EpouoTkmbKWbg1Qg4j9BqlhIIX4Bs3psMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152763191</pqid></control><display><type>article</type><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</creator><creatorcontrib>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</creatorcontrib><description>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2024.3420118</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Availability ; data disclosure ; Electricity ; Electricity pricing ; Electricity supply industry ; grid topology ; Inference ; Inference threat ; Load flow ; locational marginal price (LMP) ; maximum inference threat ; Network topologies ; Power grids ; Power systems ; Privacy ; R&D ; Research & development ; smart grid security ; Threat evaluation ; Topology</subject><ispartof>IEEE transactions on power systems, 2025-01, Vol.40 (1), p.1049-1059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</cites><orcidid>0000-0002-4075-1971 ; 0000-0002-7600-0934 ; 0000-0001-5086-5465 ; 0009-0008-9836-2726 ; 0000-0003-0345-3518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10574353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10574353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zijun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><creatorcontrib>Wu, Qinqin</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</description><subject>Admittance</subject><subject>Availability</subject><subject>data disclosure</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>grid topology</subject><subject>Inference</subject><subject>Inference threat</subject><subject>Load flow</subject><subject>locational marginal price (LMP)</subject><subject>maximum inference threat</subject><subject>Network topologies</subject><subject>Power grids</subject><subject>Power systems</subject><subject>Privacy</subject><subject>R&D</subject><subject>Research & development</subject><subject>smart grid security</subject><subject>Threat evaluation</subject><subject>Topology</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwjAUgBujiYj-AeOhiefha7uuqzeCoiQYiWCMp6Z0b2FkbNgODf_eTTh4eof3fe8lHyHXDAaMgb5bzD7e5gMOPB6ImANj6QnpMSnTCBKlT0kP0lRGqZZwTi5CWANA0i565PPBNpZOqhw9Vg7p2NcbOtsty8KVezr8tkVplyXSDruni5VH2wRqq4w-YI5VQPqCzarOAi0qOqt_0NP5PjS4CZfkLLdlwKvj7JP38eNi9BxNX58mo-E0cjxWTRTn2mVaq0RKpRxHVDJDmUFiWZYAZC5hgoGyS5lq5WApWOq44nHSeTHnok9uD3e3vv7aYWjMut75qn1pBJNcJYJp1lL8QDlfh-AxN1tfbKzfGwamS2j-EpouoTkmbKWbg1Qg4j9BqlhIIX4Bs3psMg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Wang, Zijun</creator><creator>Liu, Yang</creator><creator>Yu, Nanpeng</creator><creator>Wu, Qinqin</creator><creator>Wu, Jiang</creator><creator>Zhou, Yadong</creator><creator>Liu, Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4075-1971</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid><orcidid>https://orcid.org/0009-0008-9836-2726</orcidid><orcidid>https://orcid.org/0000-0003-0345-3518</orcidid></search><sort><creationdate>20250101</creationdate><title>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</title><author>Wang, Zijun ; Liu, Yang ; Yu, Nanpeng ; Wu, Qinqin ; Wu, Jiang ; Zhou, Yadong ; Liu, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4f9cd99765577c2ee75de5d06a1d600dc613107ab5897c0b318c27246f9cd4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Admittance</topic><topic>Availability</topic><topic>data disclosure</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>grid topology</topic><topic>Inference</topic><topic>Inference threat</topic><topic>Load flow</topic><topic>locational marginal price (LMP)</topic><topic>maximum inference threat</topic><topic>Network topologies</topic><topic>Power grids</topic><topic>Power systems</topic><topic>Privacy</topic><topic>R&D</topic><topic>Research & development</topic><topic>smart grid security</topic><topic>Threat evaluation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zijun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><creatorcontrib>Wu, Qinqin</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zijun</au><au>Liu, Yang</au><au>Yu, Nanpeng</au><au>Wu, Qinqin</au><au>Wu, Jiang</au><au>Zhou, Yadong</au><au>Liu, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>1049</spage><epage>1059</epage><pages>1049-1059</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Inrecent years, data disclosure has become a global trend. While making public data of power systems available facilitated research and development efforts, it also brought more risks to the security of power systems. Although the public data may not directly reveal sensitive information, attackers can use the public data to reversely infer sensitive data. Recent studies have proven the existence of data inference threats. However, it is unclear what the actual maximum inference threat is, so targeted defense can not be easily developed. In this paper, we first establish a model to evaluate the availability of different electricity prices on data inference threats. Then, we derive the maximum inference threat and show how to reach it under different network topologies. To defend against sensitive data inference threats, we propose a data disclosure strategy based on differential privacy technologies. Experimental results show that the inference method can reach the theoretical maximum value and the defense method can balance the availability of public data and the privacy of sensitive data in all test systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2024.3420118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4075-1971</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid><orcidid>https://orcid.org/0009-0008-9836-2726</orcidid><orcidid>https://orcid.org/0000-0003-0345-3518</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2025-01, Vol.40 (1), p.1049-1059 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_10574353 |
source | IEEE Electronic Library (IEL) |
subjects | Admittance Availability data disclosure Electricity Electricity pricing Electricity supply industry grid topology Inference Inference threat Load flow locational marginal price (LMP) maximum inference threat Network topologies Power grids Power systems Privacy R&D Research & development smart grid security Threat evaluation Topology |
title | Data Inference From Publicly Available Data: Threats and Defense Methods in Power Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Inference%20From%20Publicly%20Available%20Data:%20Threats%20and%20Defense%20Methods%20in%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wang,%20Zijun&rft.date=2025-01-01&rft.volume=40&rft.issue=1&rft.spage=1049&rft.epage=1059&rft.pages=1049-1059&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2024.3420118&rft_dat=%3Cproquest_RIE%3E3152763191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152763191&rft_id=info:pmid/&rft_ieee_id=10574353&rfr_iscdi=true |