Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System
Macro-bend sensors multiplexed in a single optical fiber can allow different systems to operate in quasi-distributed tactile sensing. This letter uses a pressure-sensitive platform instrumented with five macro-bend sensors divided into 16 sensing regions. The sensing system was tested with the simul...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2024-07, Vol.8 (7), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 8 |
creator | Flores, Walter Oswaldo Cutipa Carvalho, Vinicius Martins, Victor Hugo Fabris, Jose Luis Muller, Marcia Lopes, Heitor Silverio Lazzaretti, Andre Eugenio |
description | Macro-bend sensors multiplexed in a single optical fiber can allow different systems to operate in quasi-distributed tactile sensing. This letter uses a pressure-sensitive platform instrumented with five macro-bend sensors divided into 16 sensing regions. The sensing system was tested with the simultaneous positioning of different loads (0.5 and 2.4 kg) on two of the 16 sensing areas. The dataset contains 240 samples related to the randomly chosen load configurations. Each sample is the light transmitted in the 400-850 nm spectral range measured with steps of 0.27 nm. Three classification models were used to obtain the best results for the location of the masses: support vector machine (SVM), deep neural network (DNN), and random convolutional Kernel transform, achieving F1-Score above 93% for the SVM model. |
doi_str_mv | 10.1109/LSENS.2024.3418294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10572288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10572288</ieee_id><sourcerecordid>3075427022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-6063bb7c020582280b3c5e08a0a6b723fac06a131c54ff0d25d1f2e2d5c6ea33</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyBYyHTTwXZ2e73XJUAmoCcijG42a7nUoJtHW3Hvj2FuHAaSZ5782fH2P3AsZCwORpkc0-sjECxmMZixQn8RUbYKxVJGKN1xf9LRuFsAWA3qVBwoB9Lq3bVDXxBVlfV_V39GIDFXxJ3aYpAi8bz-eNd8SXtm17nX9V3Ybbmq_arnJ2x-dVTp5nVIejmh1CR_s7dlPaXaDRuQ7Zej5bT9-ixer1ffq8iJzQuosSSGSeawcIKkVMIZdOEaQWbJJrlKV1kFghhVNxWUKBqhAlEhbKJWSlHLLH09jWNz-_FDqzbX593W80ErSK-x8RexeeXM43IXgqTeurvfUHI8AcAZp_gOYI0JwB9qGHU6gioouA0v2dqfwDF2prPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075427022</pqid></control><display><type>article</type><title>Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System</title><source>IEEE Electronic Library (IEL)</source><creator>Flores, Walter Oswaldo Cutipa ; Carvalho, Vinicius ; Martins, Victor Hugo ; Fabris, Jose Luis ; Muller, Marcia ; Lopes, Heitor Silverio ; Lazzaretti, Andre Eugenio</creator><creatorcontrib>Flores, Walter Oswaldo Cutipa ; Carvalho, Vinicius ; Martins, Victor Hugo ; Fabris, Jose Luis ; Muller, Marcia ; Lopes, Heitor Silverio ; Lazzaretti, Andre Eugenio</creatorcontrib><description>Macro-bend sensors multiplexed in a single optical fiber can allow different systems to operate in quasi-distributed tactile sensing. This letter uses a pressure-sensitive platform instrumented with five macro-bend sensors divided into 16 sensing regions. The sensing system was tested with the simultaneous positioning of different loads (0.5 and 2.4 kg) on two of the 16 sensing areas. The dataset contains 240 samples related to the randomly chosen load configurations. Each sample is the light transmitted in the 400-850 nm spectral range measured with steps of 0.27 nm. Three classification models were used to obtain the best results for the location of the masses: support vector machine (SVM), deep neural network (DNN), and random convolutional Kernel transform, achieving F1-Score above 93% for the SVM model.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3418294</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; force mapping ; Kernel functions ; Load modeling ; Machine learning ; macro-bend ; optical fiber ; Optical fiber sensors ; Optical fibers ; Sensor applications ; Sensor arrays ; Sensors ; Support vector machines ; Transforms</subject><ispartof>IEEE sensors letters, 2024-07, Vol.8 (7), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-6063bb7c020582280b3c5e08a0a6b723fac06a131c54ff0d25d1f2e2d5c6ea33</cites><orcidid>0000-0001-5630-1193 ; 0000-0003-1861-3369 ; 0000-0003-3984-1432 ; 0000-0002-4463-3526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10572288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10572288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flores, Walter Oswaldo Cutipa</creatorcontrib><creatorcontrib>Carvalho, Vinicius</creatorcontrib><creatorcontrib>Martins, Victor Hugo</creatorcontrib><creatorcontrib>Fabris, Jose Luis</creatorcontrib><creatorcontrib>Muller, Marcia</creatorcontrib><creatorcontrib>Lopes, Heitor Silverio</creatorcontrib><creatorcontrib>Lazzaretti, Andre Eugenio</creatorcontrib><title>Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Macro-bend sensors multiplexed in a single optical fiber can allow different systems to operate in quasi-distributed tactile sensing. This letter uses a pressure-sensitive platform instrumented with five macro-bend sensors divided into 16 sensing regions. The sensing system was tested with the simultaneous positioning of different loads (0.5 and 2.4 kg) on two of the 16 sensing areas. The dataset contains 240 samples related to the randomly chosen load configurations. Each sample is the light transmitted in the 400-850 nm spectral range measured with steps of 0.27 nm. Three classification models were used to obtain the best results for the location of the masses: support vector machine (SVM), deep neural network (DNN), and random convolutional Kernel transform, achieving F1-Score above 93% for the SVM model.</description><subject>Artificial neural networks</subject><subject>force mapping</subject><subject>Kernel functions</subject><subject>Load modeling</subject><subject>Machine learning</subject><subject>macro-bend</subject><subject>optical fiber</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Sensor applications</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Transforms</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxTdGEwnyBYyHTTwXZ2e73XJUAmoCcijG42a7nUoJtHW3Hvj2FuHAaSZ5782fH2P3AsZCwORpkc0-sjECxmMZixQn8RUbYKxVJGKN1xf9LRuFsAWA3qVBwoB9Lq3bVDXxBVlfV_V39GIDFXxJ3aYpAi8bz-eNd8SXtm17nX9V3Ybbmq_arnJ2x-dVTp5nVIejmh1CR_s7dlPaXaDRuQ7Zej5bT9-ixer1ffq8iJzQuosSSGSeawcIKkVMIZdOEaQWbJJrlKV1kFghhVNxWUKBqhAlEhbKJWSlHLLH09jWNz-_FDqzbX593W80ErSK-x8RexeeXM43IXgqTeurvfUHI8AcAZp_gOYI0JwB9qGHU6gioouA0v2dqfwDF2prPA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Flores, Walter Oswaldo Cutipa</creator><creator>Carvalho, Vinicius</creator><creator>Martins, Victor Hugo</creator><creator>Fabris, Jose Luis</creator><creator>Muller, Marcia</creator><creator>Lopes, Heitor Silverio</creator><creator>Lazzaretti, Andre Eugenio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5630-1193</orcidid><orcidid>https://orcid.org/0000-0003-1861-3369</orcidid><orcidid>https://orcid.org/0000-0003-3984-1432</orcidid><orcidid>https://orcid.org/0000-0002-4463-3526</orcidid></search><sort><creationdate>20240701</creationdate><title>Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System</title><author>Flores, Walter Oswaldo Cutipa ; Carvalho, Vinicius ; Martins, Victor Hugo ; Fabris, Jose Luis ; Muller, Marcia ; Lopes, Heitor Silverio ; Lazzaretti, Andre Eugenio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-6063bb7c020582280b3c5e08a0a6b723fac06a131c54ff0d25d1f2e2d5c6ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>force mapping</topic><topic>Kernel functions</topic><topic>Load modeling</topic><topic>Machine learning</topic><topic>macro-bend</topic><topic>optical fiber</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Sensor applications</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores, Walter Oswaldo Cutipa</creatorcontrib><creatorcontrib>Carvalho, Vinicius</creatorcontrib><creatorcontrib>Martins, Victor Hugo</creatorcontrib><creatorcontrib>Fabris, Jose Luis</creatorcontrib><creatorcontrib>Muller, Marcia</creatorcontrib><creatorcontrib>Lopes, Heitor Silverio</creatorcontrib><creatorcontrib>Lazzaretti, Andre Eugenio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flores, Walter Oswaldo Cutipa</au><au>Carvalho, Vinicius</au><au>Martins, Victor Hugo</au><au>Fabris, Jose Luis</au><au>Muller, Marcia</au><au>Lopes, Heitor Silverio</au><au>Lazzaretti, Andre Eugenio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>8</volume><issue>7</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Macro-bend sensors multiplexed in a single optical fiber can allow different systems to operate in quasi-distributed tactile sensing. This letter uses a pressure-sensitive platform instrumented with five macro-bend sensors divided into 16 sensing regions. The sensing system was tested with the simultaneous positioning of different loads (0.5 and 2.4 kg) on two of the 16 sensing areas. The dataset contains 240 samples related to the randomly chosen load configurations. Each sample is the light transmitted in the 400-850 nm spectral range measured with steps of 0.27 nm. Three classification models were used to obtain the best results for the location of the masses: support vector machine (SVM), deep neural network (DNN), and random convolutional Kernel transform, achieving F1-Score above 93% for the SVM model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2024.3418294</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5630-1193</orcidid><orcidid>https://orcid.org/0000-0003-1861-3369</orcidid><orcidid>https://orcid.org/0000-0003-3984-1432</orcidid><orcidid>https://orcid.org/0000-0002-4463-3526</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2024-07, Vol.8 (7), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_ieee_primary_10572288 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks force mapping Kernel functions Load modeling Machine learning macro-bend optical fiber Optical fiber sensors Optical fibers Sensor applications Sensor arrays Sensors Support vector machines Transforms |
title | Machine Learning-Based Methods for Force Mapping With an Optical Fiber Sensing System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Methods%20for%20Force%20Mapping%20With%20an%20Optical%20Fiber%20Sensing%20System&rft.jtitle=IEEE%20sensors%20letters&rft.au=Flores,%20Walter%20Oswaldo%20Cutipa&rft.date=2024-07-01&rft.volume=8&rft.issue=7&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3418294&rft_dat=%3Cproquest_RIE%3E3075427022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075427022&rft_id=info:pmid/&rft_ieee_id=10572288&rfr_iscdi=true |