1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing

Neuromorphic computing is promising to achieve unprecedented energy efficiency by emulating the human brain's mechanism. Conventional neuromorphic accelerators employ split-and-merge method to map spiking neural networks' inputs to surpass the fan-in capabilities of a single neuron core. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2024-11, Vol.32 (11), p.2085-2092
Hauptverfasser: Li, Dongrui, Wong, Ming Ming, Chong, Yi Sheng, Zhou, Jun, Upadhyay, Mohit, Balaji, Ananta, Mani, Aarthy, Wong, Weng Fai, Peh, Li Shiuan, Do, Anh Tuan, Wang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2092
container_issue 11
container_start_page 2085
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 32
creator Li, Dongrui
Wong, Ming Ming
Chong, Yi Sheng
Zhou, Jun
Upadhyay, Mohit
Balaji, Ananta
Mani, Aarthy
Wong, Weng Fai
Peh, Li Shiuan
Do, Anh Tuan
Wang, Bo
description Neuromorphic computing is promising to achieve unprecedented energy efficiency by emulating the human brain's mechanism. Conventional neuromorphic accelerators employ split-and-merge method to map spiking neural networks' inputs to surpass the fan-in capabilities of a single neuron core. However, this approach gives rise to the risk of accuracy compromise and extra core usage for the merging process. Moreover, it requires excessive data movement and clock cycles to aggregate spikes generated by partial sums instead of total sums obtained from different cores with substantial power and energy overhead. This work presents a novel approach to addressing the challenges imposed by the split-and-merge method. We propose an energy-efficient, reconfigurable neuromorphic processor that leverages several key techniques to mitigate the above issues. First, we introduce a partial sum router circuitry that enables in-network computing (INC), eliminating the need for extra merge cores. Second, we adopt software-defined Networks-on-Chip (NoCs) by leveraging predefined, efficient routing, eliminating power-hungry routing computation. At last, we incorporate fine-grained power gating and clock gating techniques for further power reduction. Experimental results from our test chip demonstrate the lossless mapping of the algorithm and exceptional energy efficiency, achieving an energy consumption of 1.63 pJ/SOP at 0.48 V. This energy efficiency represents a 22.4% improvement compared to the state-of-the-art results. Our proposed neuromorphic processor provides an efficient and flexible solution for neural network processing, mitigating the limitations of the traditional split-and-merge approach while delivering superior energy efficiency.
doi_str_mv 10.1109/TVLSI.2024.3409652
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10570234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10570234</ieee_id><sourcerecordid>3120655976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-474cfec03b09e104734502ee65193268134104038890e5baaaf33a7ea4cf0f2d3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKt_QDwseE46-5WPoxQ_IqUttupx2aaTNtVk4-4G8d-b2h6cywzD-8zAEwTXFCJKIRst3yaLPGLARMQFZLFkJ8GASpmEWV-n_QwxD1NG4Ty4cG4HQIXIYBAoGsWctM-jxWxOpthZUxvbbquCzK0p0DljyXvltyRvPG6s9rgmc219pT_JoqvJi-k8WkfKPpc34RT9t7EfZGzqtvNVs7kMzkr96fDq2IfB68P9cvwUTmaP-fhuEhY0SXwoElGUWABfQYYURMKFBIYYS5pxFqeUi34LPE0zQLnSWpec6wR1j0HJ1nwY3B7uttZ8dei82pnONv1LxSmDWMosifsUO6QKa5yzWKrWVrW2P4qC2otUfyLVXqQ6iuyhmwNUIeI_QCbAuOC_JD1uDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655976</pqid></control><display><type>article</type><title>1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dongrui ; Wong, Ming Ming ; Chong, Yi Sheng ; Zhou, Jun ; Upadhyay, Mohit ; Balaji, Ananta ; Mani, Aarthy ; Wong, Weng Fai ; Peh, Li Shiuan ; Do, Anh Tuan ; Wang, Bo</creator><creatorcontrib>Li, Dongrui ; Wong, Ming Ming ; Chong, Yi Sheng ; Zhou, Jun ; Upadhyay, Mohit ; Balaji, Ananta ; Mani, Aarthy ; Wong, Weng Fai ; Peh, Li Shiuan ; Do, Anh Tuan ; Wang, Bo</creatorcontrib><description>Neuromorphic computing is promising to achieve unprecedented energy efficiency by emulating the human brain's mechanism. Conventional neuromorphic accelerators employ split-and-merge method to map spiking neural networks' inputs to surpass the fan-in capabilities of a single neuron core. However, this approach gives rise to the risk of accuracy compromise and extra core usage for the merging process. Moreover, it requires excessive data movement and clock cycles to aggregate spikes generated by partial sums instead of total sums obtained from different cores with substantial power and energy overhead. This work presents a novel approach to addressing the challenges imposed by the split-and-merge method. We propose an energy-efficient, reconfigurable neuromorphic processor that leverages several key techniques to mitigate the above issues. First, we introduce a partial sum router circuitry that enables in-network computing (INC), eliminating the need for extra merge cores. Second, we adopt software-defined Networks-on-Chip (NoCs) by leveraging predefined, efficient routing, eliminating power-hungry routing computation. At last, we incorporate fine-grained power gating and clock gating techniques for further power reduction. Experimental results from our test chip demonstrate the lossless mapping of the algorithm and exceptional energy efficiency, achieving an energy consumption of 1.63 pJ/SOP at 0.48 V. This energy efficiency represents a 22.4% improvement compared to the state-of-the-art results. Our proposed neuromorphic processor provides an efficient and flexible solution for neural network processing, mitigating the limitations of the traditional split-and-merge approach while delivering superior energy efficiency.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2024.3409652</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Aggregates ; Algorithms ; Circuits ; Computer architecture ; Energy consumption ; Energy efficiency ; Energy efficient ; Human motion ; in-network computing (INC) ; Microprocessors ; network on chip (NoC) ; Neural networks ; Neuromorphic computing ; neuromorphic processor ; Neuromorphics ; Neurons ; Power management ; Routers ; Routing (telecommunications) ; Sums ; System on chip ; Task analysis</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2024-11, Vol.32 (11), p.2085-2092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-474cfec03b09e104734502ee65193268134104038890e5baaaf33a7ea4cf0f2d3</cites><orcidid>0000-0001-9010-6519 ; 0000-0002-9836-3023 ; 0000-0002-8320-6818 ; 0000-0002-4281-2053 ; 0000-0001-9199-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10570234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10570234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dongrui</creatorcontrib><creatorcontrib>Wong, Ming Ming</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Upadhyay, Mohit</creatorcontrib><creatorcontrib>Balaji, Ananta</creatorcontrib><creatorcontrib>Mani, Aarthy</creatorcontrib><creatorcontrib>Wong, Weng Fai</creatorcontrib><creatorcontrib>Peh, Li Shiuan</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Neuromorphic computing is promising to achieve unprecedented energy efficiency by emulating the human brain's mechanism. Conventional neuromorphic accelerators employ split-and-merge method to map spiking neural networks' inputs to surpass the fan-in capabilities of a single neuron core. However, this approach gives rise to the risk of accuracy compromise and extra core usage for the merging process. Moreover, it requires excessive data movement and clock cycles to aggregate spikes generated by partial sums instead of total sums obtained from different cores with substantial power and energy overhead. This work presents a novel approach to addressing the challenges imposed by the split-and-merge method. We propose an energy-efficient, reconfigurable neuromorphic processor that leverages several key techniques to mitigate the above issues. First, we introduce a partial sum router circuitry that enables in-network computing (INC), eliminating the need for extra merge cores. Second, we adopt software-defined Networks-on-Chip (NoCs) by leveraging predefined, efficient routing, eliminating power-hungry routing computation. At last, we incorporate fine-grained power gating and clock gating techniques for further power reduction. Experimental results from our test chip demonstrate the lossless mapping of the algorithm and exceptional energy efficiency, achieving an energy consumption of 1.63 pJ/SOP at 0.48 V. This energy efficiency represents a 22.4% improvement compared to the state-of-the-art results. Our proposed neuromorphic processor provides an efficient and flexible solution for neural network processing, mitigating the limitations of the traditional split-and-merge approach while delivering superior energy efficiency.</description><subject>Accuracy</subject><subject>Aggregates</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy efficient</subject><subject>Human motion</subject><subject>in-network computing (INC)</subject><subject>Microprocessors</subject><subject>network on chip (NoC)</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>neuromorphic processor</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Power management</subject><subject>Routers</subject><subject>Routing (telecommunications)</subject><subject>Sums</subject><subject>System on chip</subject><subject>Task analysis</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKt_QDwseE46-5WPoxQ_IqUttupx2aaTNtVk4-4G8d-b2h6cywzD-8zAEwTXFCJKIRst3yaLPGLARMQFZLFkJ8GASpmEWV-n_QwxD1NG4Ty4cG4HQIXIYBAoGsWctM-jxWxOpthZUxvbbquCzK0p0DljyXvltyRvPG6s9rgmc219pT_JoqvJi-k8WkfKPpc34RT9t7EfZGzqtvNVs7kMzkr96fDq2IfB68P9cvwUTmaP-fhuEhY0SXwoElGUWABfQYYURMKFBIYYS5pxFqeUi34LPE0zQLnSWpec6wR1j0HJ1nwY3B7uttZ8dei82pnONv1LxSmDWMosifsUO6QKa5yzWKrWVrW2P4qC2otUfyLVXqQ6iuyhmwNUIeI_QCbAuOC_JD1uDQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Li, Dongrui</creator><creator>Wong, Ming Ming</creator><creator>Chong, Yi Sheng</creator><creator>Zhou, Jun</creator><creator>Upadhyay, Mohit</creator><creator>Balaji, Ananta</creator><creator>Mani, Aarthy</creator><creator>Wong, Weng Fai</creator><creator>Peh, Li Shiuan</creator><creator>Do, Anh Tuan</creator><creator>Wang, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9010-6519</orcidid><orcidid>https://orcid.org/0000-0002-9836-3023</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0002-4281-2053</orcidid><orcidid>https://orcid.org/0000-0001-9199-0799</orcidid></search><sort><creationdate>20241101</creationdate><title>1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing</title><author>Li, Dongrui ; Wong, Ming Ming ; Chong, Yi Sheng ; Zhou, Jun ; Upadhyay, Mohit ; Balaji, Ananta ; Mani, Aarthy ; Wong, Weng Fai ; Peh, Li Shiuan ; Do, Anh Tuan ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-474cfec03b09e104734502ee65193268134104038890e5baaaf33a7ea4cf0f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aggregates</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy efficient</topic><topic>Human motion</topic><topic>in-network computing (INC)</topic><topic>Microprocessors</topic><topic>network on chip (NoC)</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>neuromorphic processor</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Power management</topic><topic>Routers</topic><topic>Routing (telecommunications)</topic><topic>Sums</topic><topic>System on chip</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongrui</creatorcontrib><creatorcontrib>Wong, Ming Ming</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Upadhyay, Mohit</creatorcontrib><creatorcontrib>Balaji, Ananta</creatorcontrib><creatorcontrib>Mani, Aarthy</creatorcontrib><creatorcontrib>Wong, Weng Fai</creatorcontrib><creatorcontrib>Peh, Li Shiuan</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dongrui</au><au>Wong, Ming Ming</au><au>Chong, Yi Sheng</au><au>Zhou, Jun</au><au>Upadhyay, Mohit</au><au>Balaji, Ananta</au><au>Mani, Aarthy</au><au>Wong, Weng Fai</au><au>Peh, Li Shiuan</au><au>Do, Anh Tuan</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>32</volume><issue>11</issue><spage>2085</spage><epage>2092</epage><pages>2085-2092</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Neuromorphic computing is promising to achieve unprecedented energy efficiency by emulating the human brain's mechanism. Conventional neuromorphic accelerators employ split-and-merge method to map spiking neural networks' inputs to surpass the fan-in capabilities of a single neuron core. However, this approach gives rise to the risk of accuracy compromise and extra core usage for the merging process. Moreover, it requires excessive data movement and clock cycles to aggregate spikes generated by partial sums instead of total sums obtained from different cores with substantial power and energy overhead. This work presents a novel approach to addressing the challenges imposed by the split-and-merge method. We propose an energy-efficient, reconfigurable neuromorphic processor that leverages several key techniques to mitigate the above issues. First, we introduce a partial sum router circuitry that enables in-network computing (INC), eliminating the need for extra merge cores. Second, we adopt software-defined Networks-on-Chip (NoCs) by leveraging predefined, efficient routing, eliminating power-hungry routing computation. At last, we incorporate fine-grained power gating and clock gating techniques for further power reduction. Experimental results from our test chip demonstrate the lossless mapping of the algorithm and exceptional energy efficiency, achieving an energy consumption of 1.63 pJ/SOP at 0.48 V. This energy efficiency represents a 22.4% improvement compared to the state-of-the-art results. Our proposed neuromorphic processor provides an efficient and flexible solution for neural network processing, mitigating the limitations of the traditional split-and-merge approach while delivering superior energy efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2024.3409652</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9010-6519</orcidid><orcidid>https://orcid.org/0000-0002-9836-3023</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0002-4281-2053</orcidid><orcidid>https://orcid.org/0000-0001-9199-0799</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2024-11, Vol.32 (11), p.2085-2092
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_10570234
source IEEE Electronic Library (IEL)
subjects Accuracy
Aggregates
Algorithms
Circuits
Computer architecture
Energy consumption
Energy efficiency
Energy efficient
Human motion
in-network computing (INC)
Microprocessors
network on chip (NoC)
Neural networks
Neuromorphic computing
neuromorphic processor
Neuromorphics
Neurons
Power management
Routers
Routing (telecommunications)
Sums
System on chip
Task analysis
title 1.63 pJ/SOP Neuromorphic Processor With Integrated Partial Sum Routers for In-Network Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1.63%20pJ/SOP%20Neuromorphic%20Processor%20With%20Integrated%20Partial%20Sum%20Routers%20for%20In-Network%20Computing&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Li,%20Dongrui&rft.date=2024-11-01&rft.volume=32&rft.issue=11&rft.spage=2085&rft.epage=2092&rft.pages=2085-2092&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2024.3409652&rft_dat=%3Cproquest_RIE%3E3120655976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655976&rft_id=info:pmid/&rft_ieee_id=10570234&rfr_iscdi=true