XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts

Deep learning ( DL ) based knowledge tracing ( KT ) models have challenges for uninterpretable prediction and parameter representation in educational applications, though they achieved remarkable outcomes in predicting the exercise performance of students. This paper proposes a novel knowledge traci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2024-11, Vol.36 (11), p.7308-7325
Hauptverfasser: Huang, Chang-Qin, Huang, Qiong-Hao, Huang, Xiaodi, Wang, Hua, Li, Ming, Lin, Kwei-Jay, Chang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7325
container_issue 11
container_start_page 7308
container_title IEEE transactions on knowledge and data engineering
container_volume 36
creator Huang, Chang-Qin
Huang, Qiong-Hao
Huang, Xiaodi
Wang, Hua
Li, Ming
Lin, Kwei-Jay
Chang, Yi
description Deep learning ( DL ) based knowledge tracing ( KT ) models have challenges for uninterpretable prediction and parameter representation in educational applications, though they achieved remarkable outcomes in predicting the exercise performance of students. This paper proposes a novel knowledge tracing model of high precision and interpretability (named XKT ) for questions with multiple knowledge concepts based on cognitive learning theories and multidimensional item response theory ( MIRT ). The XKT consists of three differentiable network components: multi-feature embedding, cognition processing network, and MIRT -based neural predictor, which aim to provide an explainable prediction of student exercise performance. Specifically, in XKT , multi-feature embedding learns the rich semantic representation (e.g., knowledge distribution information) to enhance knowledge tracing using a cognition processing network. The cognition processing network performs selective perception, ability memory processing, and long-term knowledge memory processing to ensure the explainable factor representation for the MIRT -based neural predictor. Lastly, the MIRT -based neural predictor employs psychometric parameters to interpret student exercise predictions better. Extensive experiments on four real-world datasets show that XKT outperforms existing KT methods in predicting future learner responses. Moreover, ablation studies further show that XKT offers good interpretability of student performance predictions with multiple knowledge concepts, indicating excellent potential in real-world educational applications.
doi_str_mv 10.1109/TKDE.2024.3418098
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10569045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10569045</ieee_id><sourcerecordid>10_1109_TKDE_2024_3418098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-8fa4f8aad4f080e84819bc778cf25843255d6d2cebfa2470690fcdfaa08c93ab3</originalsourceid><addsrcrecordid>eNpVkL1OwzAUhS0EEqXwAEgMfoEU27Ebhw2F8qMWIaQg2CLHuW6Ngh3ZKYWBd6dRO8B0rnTu-YYPoXNKJpSS_LKc38wmjDA-STmVJJcHaESFkAmjOT3c3oTThKc8O0YnMb4TQmQm6Qj9vM3LK1z6jQoNnn11rbJO1S3gufObFpol4DIobd0SP_oGWvxq-xUu_NLZ3n4CXoAKbmjLFfhgIWLjA35eQ-ytdxF7gx_XbW-7f8jCOw1dH0_RkVFthLN9jtHL7aws7pPF091Dcb1INOWyT6RR3EilGm6IJCC5pHmts0xqw4TkKROimTZMQ20U4xmZ5sToxihFpM5TVadjRHdcHXyMAUzVBfuhwndFSTX4qwZ_1eCv2vvbbi52GwsAf_7Fls5F-gtj027-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Chang-Qin ; Huang, Qiong-Hao ; Huang, Xiaodi ; Wang, Hua ; Li, Ming ; Lin, Kwei-Jay ; Chang, Yi</creator><creatorcontrib>Huang, Chang-Qin ; Huang, Qiong-Hao ; Huang, Xiaodi ; Wang, Hua ; Li, Ming ; Lin, Kwei-Jay ; Chang, Yi</creatorcontrib><description>Deep learning ( DL ) based knowledge tracing ( KT ) models have challenges for uninterpretable prediction and parameter representation in educational applications, though they achieved remarkable outcomes in predicting the exercise performance of students. This paper proposes a novel knowledge tracing model of high precision and interpretability (named XKT ) for questions with multiple knowledge concepts based on cognitive learning theories and multidimensional item response theory ( MIRT ). The XKT consists of three differentiable network components: multi-feature embedding, cognition processing network, and MIRT -based neural predictor, which aim to provide an explainable prediction of student exercise performance. Specifically, in XKT , multi-feature embedding learns the rich semantic representation (e.g., knowledge distribution information) to enhance knowledge tracing using a cognition processing network. The cognition processing network performs selective perception, ability memory processing, and long-term knowledge memory processing to ensure the explainable factor representation for the MIRT -based neural predictor. Lastly, the MIRT -based neural predictor employs psychometric parameters to interpret student exercise predictions better. Extensive experiments on four real-world datasets show that XKT outperforms existing KT methods in predicting future learner responses. Moreover, ablation studies further show that XKT offers good interpretability of student performance predictions with multiple knowledge concepts, indicating excellent potential in real-world educational applications.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3418098</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cognition ; cognitive learning theories ; deep learning ; Explainable knowledge tracing ; Hidden Markov models ; Knowledge engineering ; Mathematical models ; multidimensional item response theory ; multiple knowledge concepts ; Predictive models ; Problem-solving</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-11, Vol.36 (11), p.7308-7325</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-8fa4f8aad4f080e84819bc778cf25843255d6d2cebfa2470690fcdfaa08c93ab3</cites><orcidid>0000-0002-1218-2804 ; 0000-0002-5041-6093 ; 0000-0003-1371-2608 ; 0000-0002-3124-5487 ; 0000-0002-8465-0996 ; 0000-0002-6084-1851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10569045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10569045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Chang-Qin</creatorcontrib><creatorcontrib>Huang, Qiong-Hao</creatorcontrib><creatorcontrib>Huang, Xiaodi</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Lin, Kwei-Jay</creatorcontrib><creatorcontrib>Chang, Yi</creatorcontrib><title>XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Deep learning ( DL ) based knowledge tracing ( KT ) models have challenges for uninterpretable prediction and parameter representation in educational applications, though they achieved remarkable outcomes in predicting the exercise performance of students. This paper proposes a novel knowledge tracing model of high precision and interpretability (named XKT ) for questions with multiple knowledge concepts based on cognitive learning theories and multidimensional item response theory ( MIRT ). The XKT consists of three differentiable network components: multi-feature embedding, cognition processing network, and MIRT -based neural predictor, which aim to provide an explainable prediction of student exercise performance. Specifically, in XKT , multi-feature embedding learns the rich semantic representation (e.g., knowledge distribution information) to enhance knowledge tracing using a cognition processing network. The cognition processing network performs selective perception, ability memory processing, and long-term knowledge memory processing to ensure the explainable factor representation for the MIRT -based neural predictor. Lastly, the MIRT -based neural predictor employs psychometric parameters to interpret student exercise predictions better. Extensive experiments on four real-world datasets show that XKT outperforms existing KT methods in predicting future learner responses. Moreover, ablation studies further show that XKT offers good interpretability of student performance predictions with multiple knowledge concepts, indicating excellent potential in real-world educational applications.</description><subject>Accuracy</subject><subject>Cognition</subject><subject>cognitive learning theories</subject><subject>deep learning</subject><subject>Explainable knowledge tracing</subject><subject>Hidden Markov models</subject><subject>Knowledge engineering</subject><subject>Mathematical models</subject><subject>multidimensional item response theory</subject><subject>multiple knowledge concepts</subject><subject>Predictive models</subject><subject>Problem-solving</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkL1OwzAUhS0EEqXwAEgMfoEU27Ebhw2F8qMWIaQg2CLHuW6Ngh3ZKYWBd6dRO8B0rnTu-YYPoXNKJpSS_LKc38wmjDA-STmVJJcHaESFkAmjOT3c3oTThKc8O0YnMb4TQmQm6Qj9vM3LK1z6jQoNnn11rbJO1S3gufObFpol4DIobd0SP_oGWvxq-xUu_NLZ3n4CXoAKbmjLFfhgIWLjA35eQ-ytdxF7gx_XbW-7f8jCOw1dH0_RkVFthLN9jtHL7aws7pPF091Dcb1INOWyT6RR3EilGm6IJCC5pHmts0xqw4TkKROimTZMQ20U4xmZ5sToxihFpM5TVadjRHdcHXyMAUzVBfuhwndFSTX4qwZ_1eCv2vvbbi52GwsAf_7Fls5F-gtj027-</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Huang, Chang-Qin</creator><creator>Huang, Qiong-Hao</creator><creator>Huang, Xiaodi</creator><creator>Wang, Hua</creator><creator>Li, Ming</creator><creator>Lin, Kwei-Jay</creator><creator>Chang, Yi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1218-2804</orcidid><orcidid>https://orcid.org/0000-0002-5041-6093</orcidid><orcidid>https://orcid.org/0000-0003-1371-2608</orcidid><orcidid>https://orcid.org/0000-0002-3124-5487</orcidid><orcidid>https://orcid.org/0000-0002-8465-0996</orcidid><orcidid>https://orcid.org/0000-0002-6084-1851</orcidid></search><sort><creationdate>202411</creationdate><title>XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts</title><author>Huang, Chang-Qin ; Huang, Qiong-Hao ; Huang, Xiaodi ; Wang, Hua ; Li, Ming ; Lin, Kwei-Jay ; Chang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-8fa4f8aad4f080e84819bc778cf25843255d6d2cebfa2470690fcdfaa08c93ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Cognition</topic><topic>cognitive learning theories</topic><topic>deep learning</topic><topic>Explainable knowledge tracing</topic><topic>Hidden Markov models</topic><topic>Knowledge engineering</topic><topic>Mathematical models</topic><topic>multidimensional item response theory</topic><topic>multiple knowledge concepts</topic><topic>Predictive models</topic><topic>Problem-solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chang-Qin</creatorcontrib><creatorcontrib>Huang, Qiong-Hao</creatorcontrib><creatorcontrib>Huang, Xiaodi</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Lin, Kwei-Jay</creatorcontrib><creatorcontrib>Chang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Chang-Qin</au><au>Huang, Qiong-Hao</au><au>Huang, Xiaodi</au><au>Wang, Hua</au><au>Li, Ming</au><au>Lin, Kwei-Jay</au><au>Chang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>7308</spage><epage>7325</epage><pages>7308-7325</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Deep learning ( DL ) based knowledge tracing ( KT ) models have challenges for uninterpretable prediction and parameter representation in educational applications, though they achieved remarkable outcomes in predicting the exercise performance of students. This paper proposes a novel knowledge tracing model of high precision and interpretability (named XKT ) for questions with multiple knowledge concepts based on cognitive learning theories and multidimensional item response theory ( MIRT ). The XKT consists of three differentiable network components: multi-feature embedding, cognition processing network, and MIRT -based neural predictor, which aim to provide an explainable prediction of student exercise performance. Specifically, in XKT , multi-feature embedding learns the rich semantic representation (e.g., knowledge distribution information) to enhance knowledge tracing using a cognition processing network. The cognition processing network performs selective perception, ability memory processing, and long-term knowledge memory processing to ensure the explainable factor representation for the MIRT -based neural predictor. Lastly, the MIRT -based neural predictor employs psychometric parameters to interpret student exercise predictions better. Extensive experiments on four real-world datasets show that XKT outperforms existing KT methods in predicting future learner responses. Moreover, ablation studies further show that XKT offers good interpretability of student performance predictions with multiple knowledge concepts, indicating excellent potential in real-world educational applications.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3418098</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1218-2804</orcidid><orcidid>https://orcid.org/0000-0002-5041-6093</orcidid><orcidid>https://orcid.org/0000-0003-1371-2608</orcidid><orcidid>https://orcid.org/0000-0002-3124-5487</orcidid><orcidid>https://orcid.org/0000-0002-8465-0996</orcidid><orcidid>https://orcid.org/0000-0002-6084-1851</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2024-11, Vol.36 (11), p.7308-7325
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_10569045
source IEEE Electronic Library (IEL)
subjects Accuracy
Cognition
cognitive learning theories
deep learning
Explainable knowledge tracing
Hidden Markov models
Knowledge engineering
Mathematical models
multidimensional item response theory
multiple knowledge concepts
Predictive models
Problem-solving
title XKT: Toward Explainable Knowledge Tracing Model With Cognitive Learning Theories for Questions of Multiple Knowledge Concepts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XKT:%20Toward%20Explainable%20Knowledge%20Tracing%20Model%20With%20Cognitive%20Learning%20Theories%20for%20Questions%20of%20Multiple%20Knowledge%20Concepts&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Huang,%20Chang-Qin&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.spage=7308&rft.epage=7325&rft.pages=7308-7325&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3418098&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3418098%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10569045&rfr_iscdi=true