Online Product Rollover Strategies Considering Price Anchoring and Online Reviews
Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on engineering management 2024, Vol.71, p.11421-11440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11440 |
---|---|
container_issue | |
container_start_page | 11421 |
container_title | IEEE transactions on engineering management |
container_volume | 71 |
creator | Liu, Xuwang Zhang, Qiannan Qi, Wei Wang, Junwei |
description | Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises. |
doi_str_mv | 10.1109/TEM.2024.3418032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10569040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10569040</ieee_id><sourcerecordid>3078103311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-2baaf8aaccc3e327ff05e51d30403d01ad93627d9b78636651f44f44041a81ee3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOZLP5OJZSP6BSrfW8bDeTuiVm625S8b93a3sQBoaB9948foxdI4wQobxbTp9HCSTpiKdYAE9O2ACFKGKAFE7ZAACLuOQlnrML7zfhTEUCA_Y6bxvTUvTibNXrLlrYprE7ctFb51RHa0M-mtjWm4qcaddBZzRF41Z_2L9btVV0jFjQztC3v2RntWo8XR33kL3fT5eTx3g2f3iajGexxlx0cbJSqi6U0lpz4kle1yBIYMVDX14BqqrkWZJX5SovMp5lAus0DQMpqgKJ-JDdHnK3zn715Du5sb1rw0vJIS8QOEcMKjiotLPeO6rl1plP5X4kgtyDkwGc3IOTR3DBcnOwGCL6JxdZue_2CzmvaTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078103311</pqid></control><display><type>article</type><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</creator><creatorcontrib>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</creatorcontrib><description>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2024.3418032</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attribute optimization ; Cognition ; Costs ; Customers ; dynamic pricing ; online reviews ; Optimization ; Optimization models ; price anchoring ; Pricing ; product rollover ; Profits ; Psychology ; Reviews ; Rollover ; Technological innovation</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.11421-11440</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-9459-4199 ; 0000-0002-4051-823X ; 0000-0002-6492-2093 ; 0000-0001-8895-2214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10569040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10569040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xuwang</creatorcontrib><creatorcontrib>Zhang, Qiannan</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><creatorcontrib>Wang, Junwei</creatorcontrib><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</description><subject>Attribute optimization</subject><subject>Cognition</subject><subject>Costs</subject><subject>Customers</subject><subject>dynamic pricing</subject><subject>online reviews</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>price anchoring</subject><subject>Pricing</subject><subject>product rollover</subject><subject>Profits</subject><subject>Psychology</subject><subject>Reviews</subject><subject>Rollover</subject><subject>Technological innovation</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOZLP5OJZSP6BSrfW8bDeTuiVm625S8b93a3sQBoaB9948foxdI4wQobxbTp9HCSTpiKdYAE9O2ACFKGKAFE7ZAACLuOQlnrML7zfhTEUCA_Y6bxvTUvTibNXrLlrYprE7ctFb51RHa0M-mtjWm4qcaddBZzRF41Z_2L9btVV0jFjQztC3v2RntWo8XR33kL3fT5eTx3g2f3iajGexxlx0cbJSqi6U0lpz4kle1yBIYMVDX14BqqrkWZJX5SovMp5lAus0DQMpqgKJ-JDdHnK3zn715Du5sb1rw0vJIS8QOEcMKjiotLPeO6rl1plP5X4kgtyDkwGc3IOTR3DBcnOwGCL6JxdZue_2CzmvaTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xuwang</creator><creator>Zhang, Qiannan</creator><creator>Qi, Wei</creator><creator>Wang, Junwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-9459-4199</orcidid><orcidid>https://orcid.org/0000-0002-4051-823X</orcidid><orcidid>https://orcid.org/0000-0002-6492-2093</orcidid><orcidid>https://orcid.org/0000-0001-8895-2214</orcidid></search><sort><creationdate>2024</creationdate><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><author>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-2baaf8aaccc3e327ff05e51d30403d01ad93627d9b78636651f44f44041a81ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attribute optimization</topic><topic>Cognition</topic><topic>Costs</topic><topic>Customers</topic><topic>dynamic pricing</topic><topic>online reviews</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>price anchoring</topic><topic>Pricing</topic><topic>product rollover</topic><topic>Profits</topic><topic>Psychology</topic><topic>Reviews</topic><topic>Rollover</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuwang</creatorcontrib><creatorcontrib>Zhang, Qiannan</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><creatorcontrib>Wang, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xuwang</au><au>Zhang, Qiannan</au><au>Qi, Wei</au><au>Wang, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>11421</spage><epage>11440</epage><pages>11421-11440</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2024.3418032</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0009-9459-4199</orcidid><orcidid>https://orcid.org/0000-0002-4051-823X</orcidid><orcidid>https://orcid.org/0000-0002-6492-2093</orcidid><orcidid>https://orcid.org/0000-0001-8895-2214</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9391 |
ispartof | IEEE transactions on engineering management, 2024, Vol.71, p.11421-11440 |
issn | 0018-9391 1558-0040 |
language | eng |
recordid | cdi_ieee_primary_10569040 |
source | IEEE Electronic Library (IEL) |
subjects | Attribute optimization Cognition Costs Customers dynamic pricing online reviews Optimization Optimization models price anchoring Pricing product rollover Profits Psychology Reviews Rollover Technological innovation |
title | Online Product Rollover Strategies Considering Price Anchoring and Online Reviews |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Product%20Rollover%20Strategies%20Considering%20Price%20Anchoring%20and%20Online%20Reviews&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Liu,%20Xuwang&rft.date=2024&rft.volume=71&rft.spage=11421&rft.epage=11440&rft.pages=11421-11440&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2024.3418032&rft_dat=%3Cproquest_RIE%3E3078103311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078103311&rft_id=info:pmid/&rft_ieee_id=10569040&rfr_iscdi=true |