Online Product Rollover Strategies Considering Price Anchoring and Online Reviews

Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 2024, Vol.71, p.11421-11440
Hauptverfasser: Liu, Xuwang, Zhang, Qiannan, Qi, Wei, Wang, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11440
container_issue
container_start_page 11421
container_title IEEE transactions on engineering management
container_volume 71
creator Liu, Xuwang
Zhang, Qiannan
Qi, Wei
Wang, Junwei
description Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.
doi_str_mv 10.1109/TEM.2024.3418032
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10569040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10569040</ieee_id><sourcerecordid>3078103311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-2baaf8aaccc3e327ff05e51d30403d01ad93627d9b78636651f44f44041a81ee3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOZLP5OJZSP6BSrfW8bDeTuiVm625S8b93a3sQBoaB9948foxdI4wQobxbTp9HCSTpiKdYAE9O2ACFKGKAFE7ZAACLuOQlnrML7zfhTEUCA_Y6bxvTUvTibNXrLlrYprE7ctFb51RHa0M-mtjWm4qcaddBZzRF41Z_2L9btVV0jFjQztC3v2RntWo8XR33kL3fT5eTx3g2f3iajGexxlx0cbJSqi6U0lpz4kle1yBIYMVDX14BqqrkWZJX5SovMp5lAus0DQMpqgKJ-JDdHnK3zn715Du5sb1rw0vJIS8QOEcMKjiotLPeO6rl1plP5X4kgtyDkwGc3IOTR3DBcnOwGCL6JxdZue_2CzmvaTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078103311</pqid></control><display><type>article</type><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</creator><creatorcontrib>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</creatorcontrib><description>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2024.3418032</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attribute optimization ; Cognition ; Costs ; Customers ; dynamic pricing ; online reviews ; Optimization ; Optimization models ; price anchoring ; Pricing ; product rollover ; Profits ; Psychology ; Reviews ; Rollover ; Technological innovation</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.11421-11440</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-9459-4199 ; 0000-0002-4051-823X ; 0000-0002-6492-2093 ; 0000-0001-8895-2214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10569040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10569040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xuwang</creatorcontrib><creatorcontrib>Zhang, Qiannan</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><creatorcontrib>Wang, Junwei</creatorcontrib><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</description><subject>Attribute optimization</subject><subject>Cognition</subject><subject>Costs</subject><subject>Customers</subject><subject>dynamic pricing</subject><subject>online reviews</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>price anchoring</subject><subject>Pricing</subject><subject>product rollover</subject><subject>Profits</subject><subject>Psychology</subject><subject>Reviews</subject><subject>Rollover</subject><subject>Technological innovation</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOZLP5OJZSP6BSrfW8bDeTuiVm625S8b93a3sQBoaB9948foxdI4wQobxbTp9HCSTpiKdYAE9O2ACFKGKAFE7ZAACLuOQlnrML7zfhTEUCA_Y6bxvTUvTibNXrLlrYprE7ctFb51RHa0M-mtjWm4qcaddBZzRF41Z_2L9btVV0jFjQztC3v2RntWo8XR33kL3fT5eTx3g2f3iajGexxlx0cbJSqi6U0lpz4kle1yBIYMVDX14BqqrkWZJX5SovMp5lAus0DQMpqgKJ-JDdHnK3zn715Du5sb1rw0vJIS8QOEcMKjiotLPeO6rl1plP5X4kgtyDkwGc3IOTR3DBcnOwGCL6JxdZue_2CzmvaTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xuwang</creator><creator>Zhang, Qiannan</creator><creator>Qi, Wei</creator><creator>Wang, Junwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-9459-4199</orcidid><orcidid>https://orcid.org/0000-0002-4051-823X</orcidid><orcidid>https://orcid.org/0000-0002-6492-2093</orcidid><orcidid>https://orcid.org/0000-0001-8895-2214</orcidid></search><sort><creationdate>2024</creationdate><title>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</title><author>Liu, Xuwang ; Zhang, Qiannan ; Qi, Wei ; Wang, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-2baaf8aaccc3e327ff05e51d30403d01ad93627d9b78636651f44f44041a81ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attribute optimization</topic><topic>Cognition</topic><topic>Costs</topic><topic>Customers</topic><topic>dynamic pricing</topic><topic>online reviews</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>price anchoring</topic><topic>Pricing</topic><topic>product rollover</topic><topic>Profits</topic><topic>Psychology</topic><topic>Reviews</topic><topic>Rollover</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuwang</creatorcontrib><creatorcontrib>Zhang, Qiannan</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><creatorcontrib>Wang, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xuwang</au><au>Zhang, Qiannan</au><au>Qi, Wei</au><au>Wang, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Product Rollover Strategies Considering Price Anchoring and Online Reviews</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>11421</spage><epage>11440</epage><pages>11421-11440</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Price anchoring and online reviews are prominent features in the customer purchasing process on the platform. These factors adjust customer cognition and significantly impact their choice behavior, ultimately affecting product rollover strategies. Focusing on the product single rollover, this study develops a multistage dynamic pricing and attribute optimization model based on online reviews and price anchoring effect. We explore dynamic pricing, product exit strategies, attributes optimization, and product rollover strategies. The study shows that considering price anchoring effects usually results in firms achieving higher profits compared to when they ignore this factor. As a result, skimming and penetration pricing strategies emerge as preferred strategies for current product dynamic pricing. However, excessively low prices for current products may diminish profits from upgraded products after product rollover, prompting firms to carefully balance current product pricing with upgraded product sales. Additionally, two threshold conditions are obtained, which can determine the priority of attribute improvement and the total quantity of optimized attributes. Counterintuitively, as consumer willingness to pay rises, firms may reduce their innovation efforts. Furthermore, we expanded the product rollover framework and derived sufficient conditions and optimal strategies to adopt dual rollover. The research findings provide theoretical foundations and decision-making support for the product rollover and marketing strategies of innovative enterprises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2024.3418032</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0009-9459-4199</orcidid><orcidid>https://orcid.org/0000-0002-4051-823X</orcidid><orcidid>https://orcid.org/0000-0002-6492-2093</orcidid><orcidid>https://orcid.org/0000-0001-8895-2214</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 2024, Vol.71, p.11421-11440
issn 0018-9391
1558-0040
language eng
recordid cdi_ieee_primary_10569040
source IEEE Electronic Library (IEL)
subjects Attribute optimization
Cognition
Costs
Customers
dynamic pricing
online reviews
Optimization
Optimization models
price anchoring
Pricing
product rollover
Profits
Psychology
Reviews
Rollover
Technological innovation
title Online Product Rollover Strategies Considering Price Anchoring and Online Reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Product%20Rollover%20Strategies%20Considering%20Price%20Anchoring%20and%20Online%20Reviews&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Liu,%20Xuwang&rft.date=2024&rft.volume=71&rft.spage=11421&rft.epage=11440&rft.pages=11421-11440&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2024.3418032&rft_dat=%3Cproquest_RIE%3E3078103311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078103311&rft_id=info:pmid/&rft_ieee_id=10569040&rfr_iscdi=true