Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography

Congenital heart disease, the most common birth defect in newborns and children, highlights the significance of understanding heart development. In the early development stage, the biomechanical environment, especially wall shear stress (WSS), plays a crucial role in heart morphogenesis. The outflow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Song, Baihang, Jiang, Huiwen, Liu, Jian, Yu, Yao, Luan, Jingmin, Zhao, Yuqian, Wang, Yi, Zhang, Jingyuan, Liu, Zhao, Zhang, Ning, Zhu, Xin, Ma, Zhenhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Song, Baihang
Jiang, Huiwen
Liu, Jian
Yu, Yao
Luan, Jingmin
Zhao, Yuqian
Wang, Yi
Zhang, Jingyuan
Liu, Zhao
Zhang, Ning
Zhu, Xin
Ma, Zhenhe
description Congenital heart disease, the most common birth defect in newborns and children, highlights the significance of understanding heart development. In the early development stage, the biomechanical environment, especially wall shear stress (WSS), plays a crucial role in heart morphogenesis. The outflow tract (OFT) is an important segment of the embryonic heart, and a large portion of congenital heart defects originate in the OFT. However, real-time measurement of WSS in the OFT of animal models remains challenging. We propose an automatic-localization segmentation network (ALSegNet) integrated with spectral domain optical coherence tomography (SD-OCT) to achieve real-time WSS calculation. Our ALSegNet accurately extracts the blood flow area from the SD-OCT structure image by incorporating an automatic localization module. WSS calculation is performed with the combination of extracted flow area and flow velocity information provided by SD-OCT. The network achieves segmentation within 22.2 ms, making the total WSS calculation time approximately 36 ms for each B-scan. Our approach achieves a speed of 27 frames/s, adequate for video display. Using the developed system, we successfully monitor in vivo WSS in the OFT of chicken embryos, providing valuable insights into embryonic heart development. The integration of deep learning with SD-OCT enables real-time and accurate WSS measurements, offering a powerful tool for studying congenital heart disease and heart morphogenesis.
doi_str_mv 10.1109/TIM.2024.3417602
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10568221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10568221</ieee_id><sourcerecordid>3098881720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-6c070ffffc84006d990e2c8445170ca17586e8cd32fd83cd077438365fbfef483</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45O4ntjFX5aKVWlWgrxsg4F5qSxMFOh_4E_jWu2oFb7k563jvpIeSewYgxyJ7Ws8WIA09GccKkAH5BBixNZZQJwS_JAICpKEtScU1uvN8BgBSJHJDfZ8SOzlG7tmq_orH3le-xoO-o62hdNUg_dF3T1TYQdNU79J4uUPu9wwbbntqWTraV-caWvjSf7mDpNJA93fhwjq46NL3TNX22ja5auuz6yoR1YrfosDVI17axX05328MtuSp17fHu3Idk8_qynkyj-fJtNhnPI8Nk2kfCgIQylFEJgCiyDJCHOUmZBKMDowQqU8S8LFRsCpAyiVUs0vKzxDJR8ZA8nu52zv7s0ff5zu5dG17mMWRKKSY5BApOlHHWe4dl3rmq0e6QM8iPwvMgPD8Kz8_CQ-ThFKkQ8R-eCsU5i_8A4a99Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098881720</pqid></control><display><type>article</type><title>Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Baihang ; Jiang, Huiwen ; Liu, Jian ; Yu, Yao ; Luan, Jingmin ; Zhao, Yuqian ; Wang, Yi ; Zhang, Jingyuan ; Liu, Zhao ; Zhang, Ning ; Zhu, Xin ; Ma, Zhenhe</creator><creatorcontrib>Song, Baihang ; Jiang, Huiwen ; Liu, Jian ; Yu, Yao ; Luan, Jingmin ; Zhao, Yuqian ; Wang, Yi ; Zhang, Jingyuan ; Liu, Zhao ; Zhang, Ning ; Zhu, Xin ; Ma, Zhenhe</creatorcontrib><description>Congenital heart disease, the most common birth defect in newborns and children, highlights the significance of understanding heart development. In the early development stage, the biomechanical environment, especially wall shear stress (WSS), plays a crucial role in heart morphogenesis. The outflow tract (OFT) is an important segment of the embryonic heart, and a large portion of congenital heart defects originate in the OFT. However, real-time measurement of WSS in the OFT of animal models remains challenging. We propose an automatic-localization segmentation network (ALSegNet) integrated with spectral domain optical coherence tomography (SD-OCT) to achieve real-time WSS calculation. Our ALSegNet accurately extracts the blood flow area from the SD-OCT structure image by incorporating an automatic localization module. WSS calculation is performed with the combination of extracted flow area and flow velocity information provided by SD-OCT. The network achieves segmentation within 22.2 ms, making the total WSS calculation time approximately 36 ms for each B-scan. Our approach achieves a speed of 27 frames/s, adequate for video display. Using the developed system, we successfully monitor in vivo WSS in the OFT of chicken embryos, providing valuable insights into embryonic heart development. The integration of deep learning with SD-OCT enables real-time and accurate WSS measurements, offering a powerful tool for studying congenital heart disease and heart morphogenesis.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3417602</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomechanics ; Biomedical measurement ; Blood ; Blood flow ; Cardiovascular disease ; Congenital diseases ; Convolutional neural network (CNN) ; Deep learning ; Defects ; Diseases ; Embryo ; Embryos ; Flow velocity ; Heart ; Heart diseases ; Image segmentation ; Localization ; Location awareness ; Morphogenesis ; object detection ; Optical Coherence Tomography ; Real time ; Real-time systems ; semantic segmentation ; Shear stress ; spectral-domain optical coherence tomography (SD-OCT) ; Stress measurement ; Time measurement ; Tomography ; wall shear stress (WSS) ; Wall shear stresses</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-6c070ffffc84006d990e2c8445170ca17586e8cd32fd83cd077438365fbfef483</cites><orcidid>0009-0005-6437-9560 ; 0000-0003-4079-9550 ; 0000-0002-4376-0806 ; 0000-0002-9754-5597 ; 0009-0003-2954-0350 ; 0009-0003-7612-4982 ; 0009-0000-4278-6169 ; 0000-0001-5904-6415 ; 0000-0003-1476-0732 ; 0000-0002-7933-055X ; 0009-0000-8454-9436 ; 0009-0003-7477-8704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10568221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10568221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Baihang</creatorcontrib><creatorcontrib>Jiang, Huiwen</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Luan, Jingmin</creatorcontrib><creatorcontrib>Zhao, Yuqian</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Jingyuan</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><creatorcontrib>Ma, Zhenhe</creatorcontrib><title>Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Congenital heart disease, the most common birth defect in newborns and children, highlights the significance of understanding heart development. In the early development stage, the biomechanical environment, especially wall shear stress (WSS), plays a crucial role in heart morphogenesis. The outflow tract (OFT) is an important segment of the embryonic heart, and a large portion of congenital heart defects originate in the OFT. However, real-time measurement of WSS in the OFT of animal models remains challenging. We propose an automatic-localization segmentation network (ALSegNet) integrated with spectral domain optical coherence tomography (SD-OCT) to achieve real-time WSS calculation. Our ALSegNet accurately extracts the blood flow area from the SD-OCT structure image by incorporating an automatic localization module. WSS calculation is performed with the combination of extracted flow area and flow velocity information provided by SD-OCT. The network achieves segmentation within 22.2 ms, making the total WSS calculation time approximately 36 ms for each B-scan. Our approach achieves a speed of 27 frames/s, adequate for video display. Using the developed system, we successfully monitor in vivo WSS in the OFT of chicken embryos, providing valuable insights into embryonic heart development. The integration of deep learning with SD-OCT enables real-time and accurate WSS measurements, offering a powerful tool for studying congenital heart disease and heart morphogenesis.</description><subject>Biomechanics</subject><subject>Biomedical measurement</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Cardiovascular disease</subject><subject>Congenital diseases</subject><subject>Convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Diseases</subject><subject>Embryo</subject><subject>Embryos</subject><subject>Flow velocity</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Morphogenesis</subject><subject>object detection</subject><subject>Optical Coherence Tomography</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>semantic segmentation</subject><subject>Shear stress</subject><subject>spectral-domain optical coherence tomography (SD-OCT)</subject><subject>Stress measurement</subject><subject>Time measurement</subject><subject>Tomography</subject><subject>wall shear stress (WSS)</subject><subject>Wall shear stresses</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45O4ntjFX5aKVWlWgrxsg4F5qSxMFOh_4E_jWu2oFb7k563jvpIeSewYgxyJ7Ws8WIA09GccKkAH5BBixNZZQJwS_JAICpKEtScU1uvN8BgBSJHJDfZ8SOzlG7tmq_orH3le-xoO-o62hdNUg_dF3T1TYQdNU79J4uUPu9wwbbntqWTraV-caWvjSf7mDpNJA93fhwjq46NL3TNX22ja5auuz6yoR1YrfosDVI17axX05328MtuSp17fHu3Idk8_qynkyj-fJtNhnPI8Nk2kfCgIQylFEJgCiyDJCHOUmZBKMDowQqU8S8LFRsCpAyiVUs0vKzxDJR8ZA8nu52zv7s0ff5zu5dG17mMWRKKSY5BApOlHHWe4dl3rmq0e6QM8iPwvMgPD8Kz8_CQ-ThFKkQ8R-eCsU5i_8A4a99Sw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Song, Baihang</creator><creator>Jiang, Huiwen</creator><creator>Liu, Jian</creator><creator>Yu, Yao</creator><creator>Luan, Jingmin</creator><creator>Zhao, Yuqian</creator><creator>Wang, Yi</creator><creator>Zhang, Jingyuan</creator><creator>Liu, Zhao</creator><creator>Zhang, Ning</creator><creator>Zhu, Xin</creator><creator>Ma, Zhenhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-6437-9560</orcidid><orcidid>https://orcid.org/0000-0003-4079-9550</orcidid><orcidid>https://orcid.org/0000-0002-4376-0806</orcidid><orcidid>https://orcid.org/0000-0002-9754-5597</orcidid><orcidid>https://orcid.org/0009-0003-2954-0350</orcidid><orcidid>https://orcid.org/0009-0003-7612-4982</orcidid><orcidid>https://orcid.org/0009-0000-4278-6169</orcidid><orcidid>https://orcid.org/0000-0001-5904-6415</orcidid><orcidid>https://orcid.org/0000-0003-1476-0732</orcidid><orcidid>https://orcid.org/0000-0002-7933-055X</orcidid><orcidid>https://orcid.org/0009-0000-8454-9436</orcidid><orcidid>https://orcid.org/0009-0003-7477-8704</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography</title><author>Song, Baihang ; Jiang, Huiwen ; Liu, Jian ; Yu, Yao ; Luan, Jingmin ; Zhao, Yuqian ; Wang, Yi ; Zhang, Jingyuan ; Liu, Zhao ; Zhang, Ning ; Zhu, Xin ; Ma, Zhenhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-6c070ffffc84006d990e2c8445170ca17586e8cd32fd83cd077438365fbfef483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomechanics</topic><topic>Biomedical measurement</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Cardiovascular disease</topic><topic>Congenital diseases</topic><topic>Convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Diseases</topic><topic>Embryo</topic><topic>Embryos</topic><topic>Flow velocity</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Morphogenesis</topic><topic>object detection</topic><topic>Optical Coherence Tomography</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>semantic segmentation</topic><topic>Shear stress</topic><topic>spectral-domain optical coherence tomography (SD-OCT)</topic><topic>Stress measurement</topic><topic>Time measurement</topic><topic>Tomography</topic><topic>wall shear stress (WSS)</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Baihang</creatorcontrib><creatorcontrib>Jiang, Huiwen</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Luan, Jingmin</creatorcontrib><creatorcontrib>Zhao, Yuqian</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Jingyuan</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><creatorcontrib>Ma, Zhenhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Baihang</au><au>Jiang, Huiwen</au><au>Liu, Jian</au><au>Yu, Yao</au><au>Luan, Jingmin</au><au>Zhao, Yuqian</au><au>Wang, Yi</au><au>Zhang, Jingyuan</au><au>Liu, Zhao</au><au>Zhang, Ning</au><au>Zhu, Xin</au><au>Ma, Zhenhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Congenital heart disease, the most common birth defect in newborns and children, highlights the significance of understanding heart development. In the early development stage, the biomechanical environment, especially wall shear stress (WSS), plays a crucial role in heart morphogenesis. The outflow tract (OFT) is an important segment of the embryonic heart, and a large portion of congenital heart defects originate in the OFT. However, real-time measurement of WSS in the OFT of animal models remains challenging. We propose an automatic-localization segmentation network (ALSegNet) integrated with spectral domain optical coherence tomography (SD-OCT) to achieve real-time WSS calculation. Our ALSegNet accurately extracts the blood flow area from the SD-OCT structure image by incorporating an automatic localization module. WSS calculation is performed with the combination of extracted flow area and flow velocity information provided by SD-OCT. The network achieves segmentation within 22.2 ms, making the total WSS calculation time approximately 36 ms for each B-scan. Our approach achieves a speed of 27 frames/s, adequate for video display. Using the developed system, we successfully monitor in vivo WSS in the OFT of chicken embryos, providing valuable insights into embryonic heart development. The integration of deep learning with SD-OCT enables real-time and accurate WSS measurements, offering a powerful tool for studying congenital heart disease and heart morphogenesis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3417602</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0005-6437-9560</orcidid><orcidid>https://orcid.org/0000-0003-4079-9550</orcidid><orcidid>https://orcid.org/0000-0002-4376-0806</orcidid><orcidid>https://orcid.org/0000-0002-9754-5597</orcidid><orcidid>https://orcid.org/0009-0003-2954-0350</orcidid><orcidid>https://orcid.org/0009-0003-7612-4982</orcidid><orcidid>https://orcid.org/0009-0000-4278-6169</orcidid><orcidid>https://orcid.org/0000-0001-5904-6415</orcidid><orcidid>https://orcid.org/0000-0003-1476-0732</orcidid><orcidid>https://orcid.org/0000-0002-7933-055X</orcidid><orcidid>https://orcid.org/0009-0000-8454-9436</orcidid><orcidid>https://orcid.org/0009-0003-7477-8704</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10568221
source IEEE Electronic Library (IEL)
subjects Biomechanics
Biomedical measurement
Blood
Blood flow
Cardiovascular disease
Congenital diseases
Convolutional neural network (CNN)
Deep learning
Defects
Diseases
Embryo
Embryos
Flow velocity
Heart
Heart diseases
Image segmentation
Localization
Location awareness
Morphogenesis
object detection
Optical Coherence Tomography
Real time
Real-time systems
semantic segmentation
Shear stress
spectral-domain optical coherence tomography (SD-OCT)
Stress measurement
Time measurement
Tomography
wall shear stress (WSS)
Wall shear stresses
title Deep Learning-Assisted Real-Time Wall Shear Stress Measurement on Chicken Embryo Heart Using Spectral Domain Optical Coherence Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Assisted%20Real-Time%20Wall%20Shear%20Stress%20Measurement%20on%20Chicken%20Embryo%20Heart%20Using%20Spectral%20Domain%20Optical%20Coherence%20Tomography&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Song,%20Baihang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3417602&rft_dat=%3Cproquest_RIE%3E3098881720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098881720&rft_id=info:pmid/&rft_ieee_id=10568221&rfr_iscdi=true