Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes
It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1983-11, Vol.29 (6), p.866-876 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 876 |
---|---|
container_issue | 6 |
container_start_page | 866 |
container_title | IEEE transactions on information theory |
container_volume | 29 |
creator | van Gils, W. |
description | It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included. |
doi_str_mv | 10.1109/TIT.1983.1056753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1056753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1056753</ieee_id><sourcerecordid>28724328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</originalsourceid><addsrcrecordid>eNpNkEtLxDAURoMoOI7uBTdZiLuOSdM86k4HHwMDbuq6pMmtE8k0Y9Ii8-_tPBBXl8s938flIHRNyYxSUt5Xi2pGS8VmlHAhOTtBE8q5zErBi1M0IYSqrCwKdY4uUvoa14LTfIJM9RNwHzbOJBw67F0HOuKhg-9Bewwxhog3MfRgejfeTbCQHvBTGDq7D_QrcBF76D77FdadxWZrvDN7EBuvU4J0ic5a7RNcHecUfbw8V_O3bPn-upg_LjOTC95nIK1lghmVc8Iamze2ESALqZikmspGStCiaaVtiAGppSplWxgFApoShBVsiu4OvePD3wOkvl67ZMB73UEYUp0rmRcsVyNIDqCJIaUIbb2Jbq3jtqak3tmsR5v1zmZ9tDlGbo_dOhnt26g749JfbjQrGM9H7OaAOQD413oo-QWlln8O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28724328</pqid></control><display><type>article</type><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><source>IEEE Electronic Library (IEL)</source><creator>van Gils, W.</creator><creatorcontrib>van Gils, W.</creatorcontrib><description>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1983.1056753</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coding, codes ; Exact sciences and technology ; Information, signal and communications theory ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1983-11, Vol.29 (6), p.866-876</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</citedby><cites>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1056753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1056753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9446352$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Gils, W.</creatorcontrib><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</description><subject>Applied sciences</subject><subject>Coding, codes</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAURoMoOI7uBTdZiLuOSdM86k4HHwMDbuq6pMmtE8k0Y9Ii8-_tPBBXl8s938flIHRNyYxSUt5Xi2pGS8VmlHAhOTtBE8q5zErBi1M0IYSqrCwKdY4uUvoa14LTfIJM9RNwHzbOJBw67F0HOuKhg-9Bewwxhog3MfRgejfeTbCQHvBTGDq7D_QrcBF76D77FdadxWZrvDN7EBuvU4J0ic5a7RNcHecUfbw8V_O3bPn-upg_LjOTC95nIK1lghmVc8Iamze2ESALqZikmspGStCiaaVtiAGppSplWxgFApoShBVsiu4OvePD3wOkvl67ZMB73UEYUp0rmRcsVyNIDqCJIaUIbb2Jbq3jtqak3tmsR5v1zmZ9tDlGbo_dOhnt26g749JfbjQrGM9H7OaAOQD413oo-QWlln8O</recordid><startdate>19831101</startdate><enddate>19831101</enddate><creator>van Gils, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19831101</creationdate><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><author>van Gils, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Applied sciences</topic><topic>Coding, codes</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Gils, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Gils, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1983-11-01</date><risdate>1983</risdate><volume>29</volume><issue>6</issue><spage>866</spage><epage>876</epage><pages>866-876</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.1983.1056753</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1983-11, Vol.29 (6), p.866-876 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_1056753 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coding, codes Exact sciences and technology Information, signal and communications theory Signal and communications theory Telecommunications and information theory |
title | Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20topics%20on%20linear%20unequal%20error%20protection%20codes:%20Bounds%20on%20their%20length%20and%20cyclic%20code%20classes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=van%20Gils,%20W.&rft.date=1983-11-01&rft.volume=29&rft.issue=6&rft.spage=866&rft.epage=876&rft.pages=866-876&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1983.1056753&rft_dat=%3Cproquest_RIE%3E28724328%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28724328&rft_id=info:pmid/&rft_ieee_id=1056753&rfr_iscdi=true |