Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes

It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1983-11, Vol.29 (6), p.866-876
1. Verfasser: van Gils, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 6
container_start_page 866
container_title IEEE transactions on information theory
container_volume 29
creator van Gils, W.
description It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.
doi_str_mv 10.1109/TIT.1983.1056753
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1056753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1056753</ieee_id><sourcerecordid>28724328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</originalsourceid><addsrcrecordid>eNpNkEtLxDAURoMoOI7uBTdZiLuOSdM86k4HHwMDbuq6pMmtE8k0Y9Ii8-_tPBBXl8s938flIHRNyYxSUt5Xi2pGS8VmlHAhOTtBE8q5zErBi1M0IYSqrCwKdY4uUvoa14LTfIJM9RNwHzbOJBw67F0HOuKhg-9Bewwxhog3MfRgejfeTbCQHvBTGDq7D_QrcBF76D77FdadxWZrvDN7EBuvU4J0ic5a7RNcHecUfbw8V_O3bPn-upg_LjOTC95nIK1lghmVc8Iamze2ESALqZikmspGStCiaaVtiAGppSplWxgFApoShBVsiu4OvePD3wOkvl67ZMB73UEYUp0rmRcsVyNIDqCJIaUIbb2Jbq3jtqak3tmsR5v1zmZ9tDlGbo_dOhnt26g749JfbjQrGM9H7OaAOQD413oo-QWlln8O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28724328</pqid></control><display><type>article</type><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><source>IEEE Electronic Library (IEL)</source><creator>van Gils, W.</creator><creatorcontrib>van Gils, W.</creatorcontrib><description>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1983.1056753</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coding, codes ; Exact sciences and technology ; Information, signal and communications theory ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1983-11, Vol.29 (6), p.866-876</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</citedby><cites>FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1056753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1056753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9446352$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Gils, W.</creatorcontrib><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</description><subject>Applied sciences</subject><subject>Coding, codes</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAURoMoOI7uBTdZiLuOSdM86k4HHwMDbuq6pMmtE8k0Y9Ii8-_tPBBXl8s938flIHRNyYxSUt5Xi2pGS8VmlHAhOTtBE8q5zErBi1M0IYSqrCwKdY4uUvoa14LTfIJM9RNwHzbOJBw67F0HOuKhg-9Bewwxhog3MfRgejfeTbCQHvBTGDq7D_QrcBF76D77FdadxWZrvDN7EBuvU4J0ic5a7RNcHecUfbw8V_O3bPn-upg_LjOTC95nIK1lghmVc8Iamze2ESALqZikmspGStCiaaVtiAGppSplWxgFApoShBVsiu4OvePD3wOkvl67ZMB73UEYUp0rmRcsVyNIDqCJIaUIbb2Jbq3jtqak3tmsR5v1zmZ9tDlGbo_dOhnt26g749JfbjQrGM9H7OaAOQD413oo-QWlln8O</recordid><startdate>19831101</startdate><enddate>19831101</enddate><creator>van Gils, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19831101</creationdate><title>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</title><author>van Gils, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-e7dd363c82503bd2bdb6e7478371a17b77ea6bf7db0ce7a7897f4c8e6eb9e6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Applied sciences</topic><topic>Coding, codes</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Gils, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Gils, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1983-11-01</date><risdate>1983</risdate><volume>29</volume><issue>6</issue><spage>866</spage><epage>876</epage><pages>866-876</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.1983.1056753</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1983-11, Vol.29 (6), p.866-876
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1056753
source IEEE Electronic Library (IEL)
subjects Applied sciences
Coding, codes
Exact sciences and technology
Information, signal and communications theory
Signal and communications theory
Telecommunications and information theory
title Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20topics%20on%20linear%20unequal%20error%20protection%20codes:%20Bounds%20on%20their%20length%20and%20cyclic%20code%20classes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=van%20Gils,%20W.&rft.date=1983-11-01&rft.volume=29&rft.issue=6&rft.spage=866&rft.epage=876&rft.pages=866-876&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1983.1056753&rft_dat=%3Cproquest_RIE%3E28724328%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28724328&rft_id=info:pmid/&rft_ieee_id=1056753&rfr_iscdi=true