Training Next-Generation Artificial Intelligence Users and Developers at NCSA
This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI,...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2023-11, Vol.25 (6), p.28-32 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 6 |
container_start_page | 28 |
container_title | Computing in science & engineering |
container_volume | 25 |
creator | Katz, Daniel S. Kindratenko, Volodymyr Kindratenko, Olena Mazumdar, Priyam Cooper, Ryan |
description | This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years. |
doi_str_mv | 10.1109/MCSE.2024.3375572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10566295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10566295</ieee_id><sourcerecordid>3070780867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjZfx7LWWmjroRW8hXQzW1LWbE22ov_ervXgad6B552BB6FbgkeEYP2wKFeTEcW0GDEmOZf0DA0I5ypnQryd95mSXAvCL9FVSjuMcaE0H6DFOloffNhmS_jq8ikEiLbzbcjGsfO1r7xtslnooGn8FkIF2WuCmDIbXPYIn9C0-9-1y5blanyNLmrbJLj5m0O0fpqsy-d8_jKdleN5XhEpulwJSkQNFlfOOe005bWTlgIXdKO4ExqYYoxv9KZgGmxFBJGuVtpioi0UbIjuT2f3sf04QOrMrj3EcPxoGJZYKqyEPFLkRFWxTSlCbfbRv9v4bQg2vTTTSzO9NPMn7di5O3U8APzjuRBUc_YDpa5oLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070780867</pqid></control><display><type>article</type><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><source>IEEE Electronic Library (IEL)</source><creator>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan</creator><contributor>Ryan Cooper</contributor><creatorcontrib>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan ; Ryan Cooper</creatorcontrib><description>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2024.3375572</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Next generation networking ; Training</subject><ispartof>Computing in science & engineering, 2023-11, Vol.25 (6), p.28-32</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</cites><orcidid>0000-0001-5934-7525 ; 0000-0002-9336-4756 ; 0009-0002-4280-0260 ; 0009-0004-8851-5531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10566295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10566295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><contributor>Ryan Cooper</contributor><creatorcontrib>Katz, Daniel S.</creatorcontrib><creatorcontrib>Kindratenko, Volodymyr</creatorcontrib><creatorcontrib>Kindratenko, Olena</creatorcontrib><creatorcontrib>Mazumdar, Priyam</creatorcontrib><creatorcontrib>Cooper, Ryan</creatorcontrib><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</description><subject>Artificial intelligence</subject><subject>Next generation networking</subject><subject>Training</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjZfx7LWWmjroRW8hXQzW1LWbE22ov_ervXgad6B552BB6FbgkeEYP2wKFeTEcW0GDEmOZf0DA0I5ypnQryd95mSXAvCL9FVSjuMcaE0H6DFOloffNhmS_jq8ikEiLbzbcjGsfO1r7xtslnooGn8FkIF2WuCmDIbXPYIn9C0-9-1y5blanyNLmrbJLj5m0O0fpqsy-d8_jKdleN5XhEpulwJSkQNFlfOOe005bWTlgIXdKO4ExqYYoxv9KZgGmxFBJGuVtpioi0UbIjuT2f3sf04QOrMrj3EcPxoGJZYKqyEPFLkRFWxTSlCbfbRv9v4bQg2vTTTSzO9NPMn7di5O3U8APzjuRBUc_YDpa5oLg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Katz, Daniel S.</creator><creator>Kindratenko, Volodymyr</creator><creator>Kindratenko, Olena</creator><creator>Mazumdar, Priyam</creator><creator>Cooper, Ryan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5934-7525</orcidid><orcidid>https://orcid.org/0000-0002-9336-4756</orcidid><orcidid>https://orcid.org/0009-0002-4280-0260</orcidid><orcidid>https://orcid.org/0009-0004-8851-5531</orcidid></search><sort><creationdate>202311</creationdate><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><author>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Next generation networking</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Daniel S.</creatorcontrib><creatorcontrib>Kindratenko, Volodymyr</creatorcontrib><creatorcontrib>Kindratenko, Olena</creatorcontrib><creatorcontrib>Mazumdar, Priyam</creatorcontrib><creatorcontrib>Cooper, Ryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katz, Daniel S.</au><au>Kindratenko, Volodymyr</au><au>Kindratenko, Olena</au><au>Mazumdar, Priyam</au><au>Cooper, Ryan</au><au>Ryan Cooper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2023-11</date><risdate>2023</risdate><volume>25</volume><issue>6</issue><spage>28</spage><epage>32</epage><pages>28-32</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2024.3375572</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5934-7525</orcidid><orcidid>https://orcid.org/0000-0002-9336-4756</orcidid><orcidid>https://orcid.org/0009-0002-4280-0260</orcidid><orcidid>https://orcid.org/0009-0004-8851-5531</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2023-11, Vol.25 (6), p.28-32 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_ieee_primary_10566295 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Next generation networking Training |
title | Training Next-Generation Artificial Intelligence Users and Developers at NCSA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Next-Generation%20Artificial%20Intelligence%20Users%20and%20Developers%20at%20NCSA&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Katz,%20Daniel%20S.&rft.date=2023-11&rft.volume=25&rft.issue=6&rft.spage=28&rft.epage=32&rft.pages=28-32&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2024.3375572&rft_dat=%3Cproquest_RIE%3E3070780867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070780867&rft_id=info:pmid/&rft_ieee_id=10566295&rfr_iscdi=true |