Training Next-Generation Artificial Intelligence Users and Developers at NCSA

This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2023-11, Vol.25 (6), p.28-32
Hauptverfasser: Katz, Daniel S., Kindratenko, Volodymyr, Kindratenko, Olena, Mazumdar, Priyam, Cooper, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 6
container_start_page 28
container_title Computing in science & engineering
container_volume 25
creator Katz, Daniel S.
Kindratenko, Volodymyr
Kindratenko, Olena
Mazumdar, Priyam
Cooper, Ryan
description This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.
doi_str_mv 10.1109/MCSE.2024.3375572
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10566295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10566295</ieee_id><sourcerecordid>3070780867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjZfx7LWWmjroRW8hXQzW1LWbE22ov_ervXgad6B552BB6FbgkeEYP2wKFeTEcW0GDEmOZf0DA0I5ypnQryd95mSXAvCL9FVSjuMcaE0H6DFOloffNhmS_jq8ikEiLbzbcjGsfO1r7xtslnooGn8FkIF2WuCmDIbXPYIn9C0-9-1y5blanyNLmrbJLj5m0O0fpqsy-d8_jKdleN5XhEpulwJSkQNFlfOOe005bWTlgIXdKO4ExqYYoxv9KZgGmxFBJGuVtpioi0UbIjuT2f3sf04QOrMrj3EcPxoGJZYKqyEPFLkRFWxTSlCbfbRv9v4bQg2vTTTSzO9NPMn7di5O3U8APzjuRBUc_YDpa5oLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070780867</pqid></control><display><type>article</type><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><source>IEEE Electronic Library (IEL)</source><creator>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan</creator><contributor>Ryan Cooper</contributor><creatorcontrib>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan ; Ryan Cooper</creatorcontrib><description>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2024.3375572</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Next generation networking ; Training</subject><ispartof>Computing in science &amp; engineering, 2023-11, Vol.25 (6), p.28-32</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</cites><orcidid>0000-0001-5934-7525 ; 0000-0002-9336-4756 ; 0009-0002-4280-0260 ; 0009-0004-8851-5531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10566295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10566295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><contributor>Ryan Cooper</contributor><creatorcontrib>Katz, Daniel S.</creatorcontrib><creatorcontrib>Kindratenko, Volodymyr</creatorcontrib><creatorcontrib>Kindratenko, Olena</creatorcontrib><creatorcontrib>Mazumdar, Priyam</creatorcontrib><creatorcontrib>Cooper, Ryan</creatorcontrib><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</description><subject>Artificial intelligence</subject><subject>Next generation networking</subject><subject>Training</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjZfx7LWWmjroRW8hXQzW1LWbE22ov_ervXgad6B552BB6FbgkeEYP2wKFeTEcW0GDEmOZf0DA0I5ypnQryd95mSXAvCL9FVSjuMcaE0H6DFOloffNhmS_jq8ikEiLbzbcjGsfO1r7xtslnooGn8FkIF2WuCmDIbXPYIn9C0-9-1y5blanyNLmrbJLj5m0O0fpqsy-d8_jKdleN5XhEpulwJSkQNFlfOOe005bWTlgIXdKO4ExqYYoxv9KZgGmxFBJGuVtpioi0UbIjuT2f3sf04QOrMrj3EcPxoGJZYKqyEPFLkRFWxTSlCbfbRv9v4bQg2vTTTSzO9NPMn7di5O3U8APzjuRBUc_YDpa5oLg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Katz, Daniel S.</creator><creator>Kindratenko, Volodymyr</creator><creator>Kindratenko, Olena</creator><creator>Mazumdar, Priyam</creator><creator>Cooper, Ryan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5934-7525</orcidid><orcidid>https://orcid.org/0000-0002-9336-4756</orcidid><orcidid>https://orcid.org/0009-0002-4280-0260</orcidid><orcidid>https://orcid.org/0009-0004-8851-5531</orcidid></search><sort><creationdate>202311</creationdate><title>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</title><author>Katz, Daniel S. ; Kindratenko, Volodymyr ; Kindratenko, Olena ; Mazumdar, Priyam ; Cooper, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-86216fea0cddd9d925fd7a2e562b85d69e38335b9b439eac1617df89a019ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Next generation networking</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Daniel S.</creatorcontrib><creatorcontrib>Kindratenko, Volodymyr</creatorcontrib><creatorcontrib>Kindratenko, Olena</creatorcontrib><creatorcontrib>Mazumdar, Priyam</creatorcontrib><creatorcontrib>Cooper, Ryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katz, Daniel S.</au><au>Kindratenko, Volodymyr</au><au>Kindratenko, Olena</au><au>Mazumdar, Priyam</au><au>Cooper, Ryan</au><au>Ryan Cooper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Next-Generation Artificial Intelligence Users and Developers at NCSA</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2023-11</date><risdate>2023</risdate><volume>25</volume><issue>6</issue><spage>28</spage><epage>32</epage><pages>28-32</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>This article focuses on training work carried out in artificial intelligence (AI) at the National Center for Supercomputing Applications at the University of Illinois Urbana-Champaign via a research experience for undergraduates program named FoDOMMaT. It also describes why we are interested in AI, and concludes by discussing what we’ve learned from running this program and its predecessor over six years.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2024.3375572</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5934-7525</orcidid><orcidid>https://orcid.org/0000-0002-9336-4756</orcidid><orcidid>https://orcid.org/0009-0002-4280-0260</orcidid><orcidid>https://orcid.org/0009-0004-8851-5531</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2023-11, Vol.25 (6), p.28-32
issn 1521-9615
1558-366X
language eng
recordid cdi_ieee_primary_10566295
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Next generation networking
Training
title Training Next-Generation Artificial Intelligence Users and Developers at NCSA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Next-Generation%20Artificial%20Intelligence%20Users%20and%20Developers%20at%20NCSA&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Katz,%20Daniel%20S.&rft.date=2023-11&rft.volume=25&rft.issue=6&rft.spage=28&rft.epage=32&rft.pages=28-32&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2024.3375572&rft_dat=%3Cproquest_RIE%3E3070780867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070780867&rft_id=info:pmid/&rft_ieee_id=10566295&rfr_iscdi=true