Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution
The traditional doubly salient electromagnetic machine (DSEM) system sets the field current to the rated value regardless of speed or load torque conditions, bringing in large power losses, especially under less rated power conditions. To overcome this shortcoming, this article proposes a minimal po...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-09, Vol.39 (9), p.11532-11543 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11543 |
---|---|
container_issue | 9 |
container_start_page | 11532 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Zhou, Xingwei Liu, Peixin Niu, Shuangxia Chen, Shengming Zhang, Li Liu, Weifeng Zhou, Bo |
description | The traditional doubly salient electromagnetic machine (DSEM) system sets the field current to the rated value regardless of speed or load torque conditions, bringing in large power losses, especially under less rated power conditions. To overcome this shortcoming, this article proposes a minimal power loss control for DSEM based on optimal current distribution. First, based on the power loss calculation model, the quantified relationships between the power loss and field current are obtained under certain speed and load torque conditions. Then, to minimize the power loss, a distribution strategy of field current and armature current is put forward, the command value of field current is achieved according to system operating conditions, and an easy-implemented torque observer with high accuracy is designed for identifying the load torque, in which the magnetic saturation is taken into consideration. Further, to obtain the optimal field current value more easily rather than looking up the large memory-consumed 3-D table or directly solving the sixth-order equation, the current distribution strategies based on an ergodic algorithm and a back propagation (BP) neural network algorithm are proposed, which achieve online calculation of the optimal current and their performances are comparatively explored. With the decreased field current, less power loss as well as smaller cogging torque ripples are desired to be achieved. The simulation and experiments verify the correctness and feasibility of the proposed strategies under multiple operating conditions. |
doi_str_mv | 10.1109/TPEL.2024.3417018 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10566038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10566038</ieee_id><sourcerecordid>10_1109_TPEL_2024_3417018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-c98e681f0640c0f17fadfbb04612ea2b12f94a218f7be7863dafb0133db756e23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpM3EezhJCeUipWomyjuxkDEZpXNmpUP-elHbBahZzz9XMYewWYYYIxf16Na9mMcTJTCSYA8ozNsEiwQgQ8nM2ASnTSBaFuGRXIXwDYJICTli3sL3dqI6v3A95XrkQeOn6wbuOG-f5k9vpbs_fVWepH_i8o2bcbdRnT4Nt-EI1X7Yn_qgCtdz1fLkd_urKnfcjEPiTDYO3ejdY11-zC6O6QDenOWUfz_N1-RpVy5e38qGKmhjlEDWFpEyigSyBBgzmRrVGa0gyjEnFGmNTJGqMmlxTLjPRKqMBhWh1nmYUiynDY2_jx388mXrrx6v8vkaoD7rqg676oKs-6RqZuyNjiehfPs0yEFL8Al_9aKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xingwei ; Liu, Peixin ; Niu, Shuangxia ; Chen, Shengming ; Zhang, Li ; Liu, Weifeng ; Zhou, Bo</creator><creatorcontrib>Zhou, Xingwei ; Liu, Peixin ; Niu, Shuangxia ; Chen, Shengming ; Zhang, Li ; Liu, Weifeng ; Zhou, Bo</creatorcontrib><description>The traditional doubly salient electromagnetic machine (DSEM) system sets the field current to the rated value regardless of speed or load torque conditions, bringing in large power losses, especially under less rated power conditions. To overcome this shortcoming, this article proposes a minimal power loss control for DSEM based on optimal current distribution. First, based on the power loss calculation model, the quantified relationships between the power loss and field current are obtained under certain speed and load torque conditions. Then, to minimize the power loss, a distribution strategy of field current and armature current is put forward, the command value of field current is achieved according to system operating conditions, and an easy-implemented torque observer with high accuracy is designed for identifying the load torque, in which the magnetic saturation is taken into consideration. Further, to obtain the optimal field current value more easily rather than looking up the large memory-consumed 3-D table or directly solving the sixth-order equation, the current distribution strategies based on an ergodic algorithm and a back propagation (BP) neural network algorithm are proposed, which achieve online calculation of the optimal current and their performances are comparatively explored. With the decreased field current, less power loss as well as smaller cogging torque ripples are desired to be achieved. The simulation and experiments verify the correctness and feasibility of the proposed strategies under multiple operating conditions.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3417018</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Back propagation (BP) neural network algorithm ; doubly salient electromagnetic machine (DSEM) ; ergodic algorithm ; Inductance ; Iron ; minimal power loss control ; Motors ; optimal current distribution ; Rotors ; Stator windings ; Torque ; Windings</subject><ispartof>IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.11532-11543</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-c98e681f0640c0f17fadfbb04612ea2b12f94a218f7be7863dafb0133db756e23</cites><orcidid>0000-0001-5578-0954 ; 0000-0001-5934-616X ; 0000-0002-5709-5368 ; 0000-0003-4277-0591 ; 0000-0003-1022-4457 ; 0000-0001-6303-1072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10566038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10566038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xingwei</creatorcontrib><creatorcontrib>Liu, Peixin</creatorcontrib><creatorcontrib>Niu, Shuangxia</creatorcontrib><creatorcontrib>Chen, Shengming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><title>Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The traditional doubly salient electromagnetic machine (DSEM) system sets the field current to the rated value regardless of speed or load torque conditions, bringing in large power losses, especially under less rated power conditions. To overcome this shortcoming, this article proposes a minimal power loss control for DSEM based on optimal current distribution. First, based on the power loss calculation model, the quantified relationships between the power loss and field current are obtained under certain speed and load torque conditions. Then, to minimize the power loss, a distribution strategy of field current and armature current is put forward, the command value of field current is achieved according to system operating conditions, and an easy-implemented torque observer with high accuracy is designed for identifying the load torque, in which the magnetic saturation is taken into consideration. Further, to obtain the optimal field current value more easily rather than looking up the large memory-consumed 3-D table or directly solving the sixth-order equation, the current distribution strategies based on an ergodic algorithm and a back propagation (BP) neural network algorithm are proposed, which achieve online calculation of the optimal current and their performances are comparatively explored. With the decreased field current, less power loss as well as smaller cogging torque ripples are desired to be achieved. The simulation and experiments verify the correctness and feasibility of the proposed strategies under multiple operating conditions.</description><subject>Back propagation (BP) neural network algorithm</subject><subject>doubly salient electromagnetic machine (DSEM)</subject><subject>ergodic algorithm</subject><subject>Inductance</subject><subject>Iron</subject><subject>minimal power loss control</subject><subject>Motors</subject><subject>optimal current distribution</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Torque</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpM3EezhJCeUipWomyjuxkDEZpXNmpUP-elHbBahZzz9XMYewWYYYIxf16Na9mMcTJTCSYA8ozNsEiwQgQ8nM2ASnTSBaFuGRXIXwDYJICTli3sL3dqI6v3A95XrkQeOn6wbuOG-f5k9vpbs_fVWepH_i8o2bcbdRnT4Nt-EI1X7Yn_qgCtdz1fLkd_urKnfcjEPiTDYO3ejdY11-zC6O6QDenOWUfz_N1-RpVy5e38qGKmhjlEDWFpEyigSyBBgzmRrVGa0gyjEnFGmNTJGqMmlxTLjPRKqMBhWh1nmYUiynDY2_jx388mXrrx6v8vkaoD7rqg676oKs-6RqZuyNjiehfPs0yEFL8Al_9aKQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhou, Xingwei</creator><creator>Liu, Peixin</creator><creator>Niu, Shuangxia</creator><creator>Chen, Shengming</creator><creator>Zhang, Li</creator><creator>Liu, Weifeng</creator><creator>Zhou, Bo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5578-0954</orcidid><orcidid>https://orcid.org/0000-0001-5934-616X</orcidid><orcidid>https://orcid.org/0000-0002-5709-5368</orcidid><orcidid>https://orcid.org/0000-0003-4277-0591</orcidid><orcidid>https://orcid.org/0000-0003-1022-4457</orcidid><orcidid>https://orcid.org/0000-0001-6303-1072</orcidid></search><sort><creationdate>20240901</creationdate><title>Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution</title><author>Zhou, Xingwei ; Liu, Peixin ; Niu, Shuangxia ; Chen, Shengming ; Zhang, Li ; Liu, Weifeng ; Zhou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-c98e681f0640c0f17fadfbb04612ea2b12f94a218f7be7863dafb0133db756e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation (BP) neural network algorithm</topic><topic>doubly salient electromagnetic machine (DSEM)</topic><topic>ergodic algorithm</topic><topic>Inductance</topic><topic>Iron</topic><topic>minimal power loss control</topic><topic>Motors</topic><topic>optimal current distribution</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Torque</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xingwei</creatorcontrib><creatorcontrib>Liu, Peixin</creatorcontrib><creatorcontrib>Niu, Shuangxia</creatorcontrib><creatorcontrib>Chen, Shengming</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xingwei</au><au>Liu, Peixin</au><au>Niu, Shuangxia</au><au>Chen, Shengming</au><au>Zhang, Li</au><au>Liu, Weifeng</au><au>Zhou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>11532</spage><epage>11543</epage><pages>11532-11543</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The traditional doubly salient electromagnetic machine (DSEM) system sets the field current to the rated value regardless of speed or load torque conditions, bringing in large power losses, especially under less rated power conditions. To overcome this shortcoming, this article proposes a minimal power loss control for DSEM based on optimal current distribution. First, based on the power loss calculation model, the quantified relationships between the power loss and field current are obtained under certain speed and load torque conditions. Then, to minimize the power loss, a distribution strategy of field current and armature current is put forward, the command value of field current is achieved according to system operating conditions, and an easy-implemented torque observer with high accuracy is designed for identifying the load torque, in which the magnetic saturation is taken into consideration. Further, to obtain the optimal field current value more easily rather than looking up the large memory-consumed 3-D table or directly solving the sixth-order equation, the current distribution strategies based on an ergodic algorithm and a back propagation (BP) neural network algorithm are proposed, which achieve online calculation of the optimal current and their performances are comparatively explored. With the decreased field current, less power loss as well as smaller cogging torque ripples are desired to be achieved. The simulation and experiments verify the correctness and feasibility of the proposed strategies under multiple operating conditions.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3417018</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5578-0954</orcidid><orcidid>https://orcid.org/0000-0001-5934-616X</orcidid><orcidid>https://orcid.org/0000-0002-5709-5368</orcidid><orcidid>https://orcid.org/0000-0003-4277-0591</orcidid><orcidid>https://orcid.org/0000-0003-1022-4457</orcidid><orcidid>https://orcid.org/0000-0001-6303-1072</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.11532-11543 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10566038 |
source | IEEE Electronic Library (IEL) |
subjects | Back propagation (BP) neural network algorithm doubly salient electromagnetic machine (DSEM) ergodic algorithm Inductance Iron minimal power loss control Motors optimal current distribution Rotors Stator windings Torque Windings |
title | Minimal Power Loss Control for Doubly Salient Electromagnetic Machine Based on Optimal Currents Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20Power%20Loss%20Control%20for%20Doubly%20Salient%20Electromagnetic%20Machine%20Based%20on%20Optimal%20Currents%20Distribution&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhou,%20Xingwei&rft.date=2024-09-01&rft.volume=39&rft.issue=9&rft.spage=11532&rft.epage=11543&rft.pages=11532-11543&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3417018&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3417018%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10566038&rfr_iscdi=true |