Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement

Point cloud densification is an effective measure to alleviate the sparseness of point clouds. In 3-D vision, the positional relationship of multiframe point clouds is applied to point cloud densification research to explain the rationality of the source of supplementary points. Among them, scene fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Journal of Selected Areas in Sensors 2024, Vol.1, p.190-197
Hauptverfasser: Que, Yufei, Ye, Luqin, Xie, Jie, Zhang, Jin, Ding, Junzhe, Wu, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue
container_start_page 190
container_title IEEE Journal of Selected Areas in Sensors
container_volume 1
creator Que, Yufei
Ye, Luqin
Xie, Jie
Zhang, Jin
Ding, Junzhe
Wu, Cheng
description Point cloud densification is an effective measure to alleviate the sparseness of point clouds. In 3-D vision, the positional relationship of multiframe point clouds is applied to point cloud densification research to explain the rationality of the source of supplementary points. Among them, scene flow estimation is effective for dynamic scenes. However, scene flow estimation of long-sequence dynamic point clouds is prone to cumulative positioning errors. In order to solve this problem, this article proposes to correct the scene flow estimation results from a timing perspective based on Kalman filtering. Specifically, the scene flow estimation model is first optimized according to the pyramid structure to improve the reliability of point cloud feature extraction. Then, combined with the temporal relationship of the point clouds in the previous and later frames, the point cloud is reconstructed uniformly to complete the densification of the point cloud. Finally, the densified point cloud is applied to the 3-D detection task. Results on the KITTI 3-D tracking dataset show that the point cloud densification method based on scene flow estimation can effectively improve the performance of LiDAR-only detectors.
doi_str_mv 10.1109/JSAS.2024.3417309
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10566020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10566020</ieee_id><sourcerecordid>10_1109_JSAS_2024_3417309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1069-2899907110ab5fd7247d9dfe31bfe17507ab07a54510a45b57eb1a78144ebc0d3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOY-gOBDvkBnbpo0zeOsm_-GitXnkjQ3EOhSaSrit7dje9jD5R6451wOP0KugS0BmL59rlf1kjMulrkAlTN9Rma8zIuMMwXnJ_qSLFIKlkkpValLMSOv732II626_sfRe4wp-NCaMfSR3pmEjk6ibjEi3XT9L12nMewOZxMdfTHdzkT6gT5E3GEcr8iFN13CxXHPyddm_Vk9Ztu3h6dqtc1aYIXOeKm1nvoAM1Z6p7hQTjuPOViPoCRTxk4jhZwcQlqp0IJRJQiBtmUunxM4_G2HPqUBffM9TMWGvwZYs2fS7Jk0eybNkcmUuTlkAiKe-GVRMM7yf70WXM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement</title><source>Alma/SFX Local Collection</source><creator>Que, Yufei ; Ye, Luqin ; Xie, Jie ; Zhang, Jin ; Ding, Junzhe ; Wu, Cheng</creator><creatorcontrib>Que, Yufei ; Ye, Luqin ; Xie, Jie ; Zhang, Jin ; Ding, Junzhe ; Wu, Cheng</creatorcontrib><description>Point cloud densification is an effective measure to alleviate the sparseness of point clouds. In 3-D vision, the positional relationship of multiframe point clouds is applied to point cloud densification research to explain the rationality of the source of supplementary points. Among them, scene flow estimation is effective for dynamic scenes. However, scene flow estimation of long-sequence dynamic point clouds is prone to cumulative positioning errors. In order to solve this problem, this article proposes to correct the scene flow estimation results from a timing perspective based on Kalman filtering. Specifically, the scene flow estimation model is first optimized according to the pyramid structure to improve the reliability of point cloud feature extraction. Then, combined with the temporal relationship of the point clouds in the previous and later frames, the point cloud is reconstructed uniformly to complete the densification of the point cloud. Finally, the densified point cloud is applied to the 3-D detection task. Results on the KITTI 3-D tracking dataset show that the point cloud densification method based on scene flow estimation can effectively improve the performance of LiDAR-only detectors.</description><identifier>ISSN: 2836-2071</identifier><identifier>EISSN: 2836-2071</identifier><identifier>DOI: 10.1109/JSAS.2024.3417309</identifier><identifier>CODEN: IJSAB6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Estimation ; Feature extraction ; Kalman filter ; Kalman filters ; Point cloud compression ; point cloud densification ; scene flow estimation ; Task analysis ; Three-dimensional displays</subject><ispartof>IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.190-197</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1069-2899907110ab5fd7247d9dfe31bfe17507ab07a54510a45b57eb1a78144ebc0d3</cites><orcidid>0000-0002-4161-7694 ; 0000-0002-4710-4275 ; 0000-0001-5451-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Que, Yufei</creatorcontrib><creatorcontrib>Ye, Luqin</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Ding, Junzhe</creatorcontrib><creatorcontrib>Wu, Cheng</creatorcontrib><title>Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement</title><title>IEEE Journal of Selected Areas in Sensors</title><addtitle>JSAS</addtitle><description>Point cloud densification is an effective measure to alleviate the sparseness of point clouds. In 3-D vision, the positional relationship of multiframe point clouds is applied to point cloud densification research to explain the rationality of the source of supplementary points. Among them, scene flow estimation is effective for dynamic scenes. However, scene flow estimation of long-sequence dynamic point clouds is prone to cumulative positioning errors. In order to solve this problem, this article proposes to correct the scene flow estimation results from a timing perspective based on Kalman filtering. Specifically, the scene flow estimation model is first optimized according to the pyramid structure to improve the reliability of point cloud feature extraction. Then, combined with the temporal relationship of the point clouds in the previous and later frames, the point cloud is reconstructed uniformly to complete the densification of the point cloud. Finally, the densified point cloud is applied to the 3-D detection task. Results on the KITTI 3-D tracking dataset show that the point cloud densification method based on scene flow estimation can effectively improve the performance of LiDAR-only detectors.</description><subject>Accuracy</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Point cloud compression</subject><subject>point cloud densification</subject><subject>scene flow estimation</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>2836-2071</issn><issn>2836-2071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOY-gOBDvkBnbpo0zeOsm_-GitXnkjQ3EOhSaSrit7dje9jD5R6451wOP0KugS0BmL59rlf1kjMulrkAlTN9Rma8zIuMMwXnJ_qSLFIKlkkpValLMSOv732II626_sfRe4wp-NCaMfSR3pmEjk6ibjEi3XT9L12nMewOZxMdfTHdzkT6gT5E3GEcr8iFN13CxXHPyddm_Vk9Ztu3h6dqtc1aYIXOeKm1nvoAM1Z6p7hQTjuPOViPoCRTxk4jhZwcQlqp0IJRJQiBtmUunxM4_G2HPqUBffM9TMWGvwZYs2fS7Jk0eybNkcmUuTlkAiKe-GVRMM7yf70WXM4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Que, Yufei</creator><creator>Ye, Luqin</creator><creator>Xie, Jie</creator><creator>Zhang, Jin</creator><creator>Ding, Junzhe</creator><creator>Wu, Cheng</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4161-7694</orcidid><orcidid>https://orcid.org/0000-0002-4710-4275</orcidid><orcidid>https://orcid.org/0000-0001-5451-3045</orcidid></search><sort><creationdate>2024</creationdate><title>Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement</title><author>Que, Yufei ; Ye, Luqin ; Xie, Jie ; Zhang, Jin ; Ding, Junzhe ; Wu, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1069-2899907110ab5fd7247d9dfe31bfe17507ab07a54510a45b57eb1a78144ebc0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Point cloud compression</topic><topic>point cloud densification</topic><topic>scene flow estimation</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Que, Yufei</creatorcontrib><creatorcontrib>Ye, Luqin</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Ding, Junzhe</creatorcontrib><creatorcontrib>Wu, Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Que, Yufei</au><au>Ye, Luqin</au><au>Xie, Jie</au><au>Zhang, Jin</au><au>Ding, Junzhe</au><au>Wu, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement</atitle><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle><stitle>JSAS</stitle><date>2024</date><risdate>2024</risdate><volume>1</volume><spage>190</spage><epage>197</epage><pages>190-197</pages><issn>2836-2071</issn><eissn>2836-2071</eissn><coden>IJSAB6</coden><abstract>Point cloud densification is an effective measure to alleviate the sparseness of point clouds. In 3-D vision, the positional relationship of multiframe point clouds is applied to point cloud densification research to explain the rationality of the source of supplementary points. Among them, scene flow estimation is effective for dynamic scenes. However, scene flow estimation of long-sequence dynamic point clouds is prone to cumulative positioning errors. In order to solve this problem, this article proposes to correct the scene flow estimation results from a timing perspective based on Kalman filtering. Specifically, the scene flow estimation model is first optimized according to the pyramid structure to improve the reliability of point cloud feature extraction. Then, combined with the temporal relationship of the point clouds in the previous and later frames, the point cloud is reconstructed uniformly to complete the densification of the point cloud. Finally, the densified point cloud is applied to the 3-D detection task. Results on the KITTI 3-D tracking dataset show that the point cloud densification method based on scene flow estimation can effectively improve the performance of LiDAR-only detectors.</abstract><pub>IEEE</pub><doi>10.1109/JSAS.2024.3417309</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4161-7694</orcidid><orcidid>https://orcid.org/0000-0002-4710-4275</orcidid><orcidid>https://orcid.org/0000-0001-5451-3045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2836-2071
ispartof IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.190-197
issn 2836-2071
2836-2071
language eng
recordid cdi_ieee_primary_10566020
source Alma/SFX Local Collection
subjects Accuracy
Estimation
Feature extraction
Kalman filter
Kalman filters
Point cloud compression
point cloud densification
scene flow estimation
Task analysis
Three-dimensional displays
title Point Cloud Densification Based on Scene Flow Estimation and Kalman Refinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Cloud%20Densification%20Based%20on%20Scene%20Flow%20Estimation%20and%20Kalman%20Refinement&rft.jtitle=IEEE%20Journal%20of%20Selected%20Areas%20in%20Sensors&rft.au=Que,%20Yufei&rft.date=2024&rft.volume=1&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.issn=2836-2071&rft.eissn=2836-2071&rft.coden=IJSAB6&rft_id=info:doi/10.1109/JSAS.2024.3417309&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSAS_2024_3417309%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10566020&rfr_iscdi=true