Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods
Titanium dioxide (TiO2) and Pt/TiO2 nanorods are fabricated on fluorine-doped tin oxide (FTO) glass substrates using hydrothermal methods and sputter coating. These materials serve as the sensing films for pH sensors that operate based on an extended-gate field-effect transistor (EGFET). The sensors...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-08, Vol.24 (15), p.23505-23511 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23511 |
---|---|
container_issue | 15 |
container_start_page | 23505 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Huang, Chien-Sheng Su, Li-Yun Chen, De-Qian Yang, Chih-Chiang |
description | Titanium dioxide (TiO2) and Pt/TiO2 nanorods are fabricated on fluorine-doped tin oxide (FTO) glass substrates using hydrothermal methods and sputter coating. These materials serve as the sensing films for pH sensors that operate based on an extended-gate field-effect transistor (EGFET). The sensors measure the potential difference between the sensing film and an Ag/AgCl reference electrode across various pH buffer solutions. The {I}_{\text {DS}} - {V}_{\text {G}} curves indicate that the reference voltage ( {V}_{\text {ref}} ) increases with pH. The voltage sensitivity and linearity, determined through linear fitting with the I_{\text {DS}} fixed at 1 mA, are 28.5 mV/pH and 0.947 for TiO2 nanorods, respectively. These values increase to 50 mV/pH and 0.991 with the addition of Pt on TiO2. Current sensitivity, a crucial metric for sensor quality, is evaluated in the saturation region ( {I}_{\text {DS}} - {V}_{\text {DS}} curves) at a fixed saturation voltage of 3 V. As pH increases, {I}_{\text {DS}} decreases, with current sensitivity for TiO2 nanorods at 38.3~\mu A/pH and linearity at 0.921. This sensitivity enhances to 63.8~\mu A/pH with the linearity of 0.988 when Pt is added to TiO2. Hysteresis and stability tests demonstrate that Pt/TiO2 nanorods maintain a broad sensing range (pH 3-11) and exhibit superior stability. The increased sensitivity of the EGFET with Pt/TiO2 coating compared to TiO2 can be attributed to higher surface site density, improved ion detection, enhanced conductivity, better carrier transport, and greater surface roughness, all of which enhance reactivity and boost voltage and current sensitivities. Consequently, Pt/TiO2 nanorods are exceptionally suitable for biomedical applications and pH sensing. |
doi_str_mv | 10.1109/JSEN.2024.3414109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10565770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10565770</ieee_id><sourcerecordid>3086433333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d784c0c21c649512c525dc99af283fee17dc3a05b610106eca042885a963f9983</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1fzfJsdRqldIKreAtpNmsprTJmmzBfnu3tgfnMsPMe2_gB8AtRgOMkXp4XYxnA4IIG1CGWbc5Az3MuSywYPL8MFNUMCo-LsFVzmuEsBJc9MByHL5MsK6CzQQuXMg-fMKRaczKb3y7h6s9fNuY1ofdFg6rHFPT-hjgPLQRLn1rgu8Ojz7--MrBmQkxxSpfg4vabLK7OfU-eH8aL0eTYjp_fhkNp4UlrGyLSkhmkSXYlkxxTCwnvLJKmZpIWjuHRWWpQXxVYoRR6axBjEjJjSpprZSkfXB_zG1S_N653Op13KXQvdQUyZLRv-oDfFTZFHNOrtZN8luT9hojfYCnD_D0AZ4-wes8d0ePd8790_OSC4HoLyCjanM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086433333</pqid></control><display><type>article</type><title>Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Chien-Sheng ; Su, Li-Yun ; Chen, De-Qian ; Yang, Chih-Chiang</creator><creatorcontrib>Huang, Chien-Sheng ; Su, Li-Yun ; Chen, De-Qian ; Yang, Chih-Chiang</creatorcontrib><description><![CDATA[Titanium dioxide (TiO2) and Pt/TiO2 nanorods are fabricated on fluorine-doped tin oxide (FTO) glass substrates using hydrothermal methods and sputter coating. These materials serve as the sensing films for pH sensors that operate based on an extended-gate field-effect transistor (EGFET). The sensors measure the potential difference between the sensing film and an Ag/AgCl reference electrode across various pH buffer solutions. The <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}} </tex-math></inline-formula> curves indicate that the reference voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {ref}} </tex-math></inline-formula>) increases with pH. The voltage sensitivity and linearity, determined through linear fitting with the <inline-formula> <tex-math notation="LaTeX">I_{\text {DS}} </tex-math></inline-formula> fixed at 1 mA, are 28.5 mV/pH and 0.947 for TiO2 nanorods, respectively. These values increase to 50 mV/pH and 0.991 with the addition of Pt on TiO2. Current sensitivity, a crucial metric for sensor quality, is evaluated in the saturation region (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} </tex-math></inline-formula> curves) at a fixed saturation voltage of 3 V. As pH increases, <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> decreases, with current sensitivity for TiO2 nanorods at <inline-formula> <tex-math notation="LaTeX">38.3~\mu </tex-math></inline-formula>A/pH and linearity at 0.921. This sensitivity enhances to <inline-formula> <tex-math notation="LaTeX">63.8~\mu </tex-math></inline-formula>A/pH with the linearity of 0.988 when Pt is added to TiO2. Hysteresis and stability tests demonstrate that Pt/TiO2 nanorods maintain a broad sensing range (pH 3-11) and exhibit superior stability. The increased sensitivity of the EGFET with Pt/TiO2 coating compared to TiO2 can be attributed to higher surface site density, improved ion detection, enhanced conductivity, better carrier transport, and greater surface roughness, all of which enhance reactivity and boost voltage and current sensitivities. Consequently, Pt/TiO2 nanorods are exceptionally suitable for biomedical applications and pH sensing.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3414109</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical materials ; Buffer solutions ; Carrier density ; Carrier transport ; Current carriers ; Electric potential ; Electrodes ; Field effect transistors ; Fluorine ; Glass substrates ; Ion detectors ; Linearity ; Nanorods ; Nanostructures ; pH sensing ; Platinum ; Pt adsorption ; Semiconductor devices ; Sensitivity ; Sensitivity analysis ; Sensitivity enhancement ; Sensors ; Stability tests ; Substrates ; Surface roughness ; Tin oxides ; Titanium ; Titanium dioxide ; titanium dioxide (TiO₂) nanorod ; Voltage</subject><ispartof>IEEE sensors journal, 2024-08, Vol.24 (15), p.23505-23511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d784c0c21c649512c525dc99af283fee17dc3a05b610106eca042885a963f9983</cites><orcidid>0000-0002-8716-8521 ; 0000-0002-9169-2457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10565770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10565770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Chien-Sheng</creatorcontrib><creatorcontrib>Su, Li-Yun</creatorcontrib><creatorcontrib>Chen, De-Qian</creatorcontrib><creatorcontrib>Yang, Chih-Chiang</creatorcontrib><title>Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Titanium dioxide (TiO2) and Pt/TiO2 nanorods are fabricated on fluorine-doped tin oxide (FTO) glass substrates using hydrothermal methods and sputter coating. These materials serve as the sensing films for pH sensors that operate based on an extended-gate field-effect transistor (EGFET). The sensors measure the potential difference between the sensing film and an Ag/AgCl reference electrode across various pH buffer solutions. The <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}} </tex-math></inline-formula> curves indicate that the reference voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {ref}} </tex-math></inline-formula>) increases with pH. The voltage sensitivity and linearity, determined through linear fitting with the <inline-formula> <tex-math notation="LaTeX">I_{\text {DS}} </tex-math></inline-formula> fixed at 1 mA, are 28.5 mV/pH and 0.947 for TiO2 nanorods, respectively. These values increase to 50 mV/pH and 0.991 with the addition of Pt on TiO2. Current sensitivity, a crucial metric for sensor quality, is evaluated in the saturation region (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} </tex-math></inline-formula> curves) at a fixed saturation voltage of 3 V. As pH increases, <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> decreases, with current sensitivity for TiO2 nanorods at <inline-formula> <tex-math notation="LaTeX">38.3~\mu </tex-math></inline-formula>A/pH and linearity at 0.921. This sensitivity enhances to <inline-formula> <tex-math notation="LaTeX">63.8~\mu </tex-math></inline-formula>A/pH with the linearity of 0.988 when Pt is added to TiO2. Hysteresis and stability tests demonstrate that Pt/TiO2 nanorods maintain a broad sensing range (pH 3-11) and exhibit superior stability. The increased sensitivity of the EGFET with Pt/TiO2 coating compared to TiO2 can be attributed to higher surface site density, improved ion detection, enhanced conductivity, better carrier transport, and greater surface roughness, all of which enhance reactivity and boost voltage and current sensitivities. Consequently, Pt/TiO2 nanorods are exceptionally suitable for biomedical applications and pH sensing.]]></description><subject>Biomedical materials</subject><subject>Buffer solutions</subject><subject>Carrier density</subject><subject>Carrier transport</subject><subject>Current carriers</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Field effect transistors</subject><subject>Fluorine</subject><subject>Glass substrates</subject><subject>Ion detectors</subject><subject>Linearity</subject><subject>Nanorods</subject><subject>Nanostructures</subject><subject>pH sensing</subject><subject>Platinum</subject><subject>Pt adsorption</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Stability tests</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Tin oxides</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>titanium dioxide (TiO₂) nanorod</subject><subject>Voltage</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1fzfJsdRqldIKreAtpNmsprTJmmzBfnu3tgfnMsPMe2_gB8AtRgOMkXp4XYxnA4IIG1CGWbc5Az3MuSywYPL8MFNUMCo-LsFVzmuEsBJc9MByHL5MsK6CzQQuXMg-fMKRaczKb3y7h6s9fNuY1ofdFg6rHFPT-hjgPLQRLn1rgu8Ojz7--MrBmQkxxSpfg4vabLK7OfU-eH8aL0eTYjp_fhkNp4UlrGyLSkhmkSXYlkxxTCwnvLJKmZpIWjuHRWWpQXxVYoRR6axBjEjJjSpprZSkfXB_zG1S_N653Op13KXQvdQUyZLRv-oDfFTZFHNOrtZN8luT9hojfYCnD_D0AZ4-wes8d0ePd8790_OSC4HoLyCjanM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Chien-Sheng</creator><creator>Su, Li-Yun</creator><creator>Chen, De-Qian</creator><creator>Yang, Chih-Chiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8716-8521</orcidid><orcidid>https://orcid.org/0000-0002-9169-2457</orcidid></search><sort><creationdate>20240801</creationdate><title>Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods</title><author>Huang, Chien-Sheng ; Su, Li-Yun ; Chen, De-Qian ; Yang, Chih-Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d784c0c21c649512c525dc99af283fee17dc3a05b610106eca042885a963f9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Buffer solutions</topic><topic>Carrier density</topic><topic>Carrier transport</topic><topic>Current carriers</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Field effect transistors</topic><topic>Fluorine</topic><topic>Glass substrates</topic><topic>Ion detectors</topic><topic>Linearity</topic><topic>Nanorods</topic><topic>Nanostructures</topic><topic>pH sensing</topic><topic>Platinum</topic><topic>Pt adsorption</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Stability tests</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Tin oxides</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>titanium dioxide (TiO₂) nanorod</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chien-Sheng</creatorcontrib><creatorcontrib>Su, Li-Yun</creatorcontrib><creatorcontrib>Chen, De-Qian</creatorcontrib><creatorcontrib>Yang, Chih-Chiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Chien-Sheng</au><au>Su, Li-Yun</au><au>Chen, De-Qian</au><au>Yang, Chih-Chiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>23505</spage><epage>23511</epage><pages>23505-23511</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Titanium dioxide (TiO2) and Pt/TiO2 nanorods are fabricated on fluorine-doped tin oxide (FTO) glass substrates using hydrothermal methods and sputter coating. These materials serve as the sensing films for pH sensors that operate based on an extended-gate field-effect transistor (EGFET). The sensors measure the potential difference between the sensing film and an Ag/AgCl reference electrode across various pH buffer solutions. The <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}} </tex-math></inline-formula> curves indicate that the reference voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {ref}} </tex-math></inline-formula>) increases with pH. The voltage sensitivity and linearity, determined through linear fitting with the <inline-formula> <tex-math notation="LaTeX">I_{\text {DS}} </tex-math></inline-formula> fixed at 1 mA, are 28.5 mV/pH and 0.947 for TiO2 nanorods, respectively. These values increase to 50 mV/pH and 0.991 with the addition of Pt on TiO2. Current sensitivity, a crucial metric for sensor quality, is evaluated in the saturation region (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} </tex-math></inline-formula> curves) at a fixed saturation voltage of 3 V. As pH increases, <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> decreases, with current sensitivity for TiO2 nanorods at <inline-formula> <tex-math notation="LaTeX">38.3~\mu </tex-math></inline-formula>A/pH and linearity at 0.921. This sensitivity enhances to <inline-formula> <tex-math notation="LaTeX">63.8~\mu </tex-math></inline-formula>A/pH with the linearity of 0.988 when Pt is added to TiO2. Hysteresis and stability tests demonstrate that Pt/TiO2 nanorods maintain a broad sensing range (pH 3-11) and exhibit superior stability. The increased sensitivity of the EGFET with Pt/TiO2 coating compared to TiO2 can be attributed to higher surface site density, improved ion detection, enhanced conductivity, better carrier transport, and greater surface roughness, all of which enhance reactivity and boost voltage and current sensitivities. Consequently, Pt/TiO2 nanorods are exceptionally suitable for biomedical applications and pH sensing.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3414109</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8716-8521</orcidid><orcidid>https://orcid.org/0000-0002-9169-2457</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-08, Vol.24 (15), p.23505-23511 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10565770 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical materials Buffer solutions Carrier density Carrier transport Current carriers Electric potential Electrodes Field effect transistors Fluorine Glass substrates Ion detectors Linearity Nanorods Nanostructures pH sensing Platinum Pt adsorption Semiconductor devices Sensitivity Sensitivity analysis Sensitivity enhancement Sensors Stability tests Substrates Surface roughness Tin oxides Titanium Titanium dioxide titanium dioxide (TiO₂) nanorod Voltage |
title | Enhanced pH Sensing Capability by Platinum Adsorption Onto Titanium Dioxide Nanorods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20pH%20Sensing%20Capability%20by%20Platinum%20Adsorption%20Onto%20Titanium%20Dioxide%20Nanorods&rft.jtitle=IEEE%20sensors%20journal&rft.au=Huang,%20Chien-Sheng&rft.date=2024-08-01&rft.volume=24&rft.issue=15&rft.spage=23505&rft.epage=23511&rft.pages=23505-23511&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3414109&rft_dat=%3Cproquest_RIE%3E3086433333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086433333&rft_id=info:pmid/&rft_ieee_id=10565770&rfr_iscdi=true |