A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE
Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scena...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.82083-82094 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82094 |
---|---|
container_issue | |
container_start_page | 82083 |
container_title | IEEE access |
container_volume | 12 |
creator | Serreli, Luigi Fadda, Mauro Girau, Roberto Ruiu, Pietro Giusto, Daniele D. Anedda, Matteo |
description | Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component. |
doi_str_mv | 10.1109/ACCESS.2024.3411293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10552848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552848</ieee_id><doaj_id>oai_doaj_org_article_a067e3b8c9df44baa073385446e8a7e1</doaj_id><sourcerecordid>3068177626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMgv0EMTL3oA93u3x6YCkhA4gOfNtjvFIra4LRj_vYslxrnM5OW9NzMPoVuCR4Tg-ClJ0_FqNaKY8hHjhNCYXaAeJTIeMsHk5b_5Gg2aZotD6QAJ1UPPSTSFCrxtyyNEiTuCb6wv7S5aQPtV-_foYZosHqNJWW3A731ZtVGy3_va5m_RMrCj-Xp8g64Ku2tgcO599DoZr9OX4Xw5naXJfJgzEbdDKhylRUGUs1ppAcIpAMZdoZ0kGUiKATOJsXCx47LQKsMk1-GdDHgmOGV9NOt8XW23JhzzYf23qW1pfoHab4z1bZnvwFgsFbBM57ErOM-sxYoxLTiXoK0CErzuO6_wy-cBmtZs64OvwvmGYamJUpLKwGIdK_d103go_rYSbE7pmy59c0rfnNMPqrtOVQLAP4UQVHPNfgC1mH37</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068177626</pqid></control><display><type>article</type><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</creator><creatorcontrib>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</creatorcontrib><description>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3411293</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communications technology ; Estimation ; Fingerprinting ; generative adversarial network ; Generative adversarial networks ; Global navigation satellite system ; Line-of-sight propagation ; Localization ; Location awareness ; Long Term Evolution ; LTE ; Machine learning ; Pattern matching ; Smartphones ; Synthetic data ; Tracking systems ; Wireless fidelity</subject><ispartof>IEEE access, 2024, Vol.12, p.82083-82094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</cites><orcidid>0000-0002-8793-9015 ; 0000-0003-4420-3363 ; 0000-0002-6450-4609 ; 0000-0003-1910-9551 ; 0000-0002-0615-6546 ; 0000-0002-1298-7960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552848$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Serreli, Luigi</creatorcontrib><creatorcontrib>Fadda, Mauro</creatorcontrib><creatorcontrib>Girau, Roberto</creatorcontrib><creatorcontrib>Ruiu, Pietro</creatorcontrib><creatorcontrib>Giusto, Daniele D.</creatorcontrib><creatorcontrib>Anedda, Matteo</creatorcontrib><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</description><subject>Algorithms</subject><subject>Communications technology</subject><subject>Estimation</subject><subject>Fingerprinting</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Global navigation satellite system</subject><subject>Line-of-sight propagation</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Long Term Evolution</subject><subject>LTE</subject><subject>Machine learning</subject><subject>Pattern matching</subject><subject>Smartphones</subject><subject>Synthetic data</subject><subject>Tracking systems</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMgv0EMTL3oA93u3x6YCkhA4gOfNtjvFIra4LRj_vYslxrnM5OW9NzMPoVuCR4Tg-ClJ0_FqNaKY8hHjhNCYXaAeJTIeMsHk5b_5Gg2aZotD6QAJ1UPPSTSFCrxtyyNEiTuCb6wv7S5aQPtV-_foYZosHqNJWW3A731ZtVGy3_va5m_RMrCj-Xp8g64Ku2tgcO599DoZr9OX4Xw5naXJfJgzEbdDKhylRUGUs1ppAcIpAMZdoZ0kGUiKATOJsXCx47LQKsMk1-GdDHgmOGV9NOt8XW23JhzzYf23qW1pfoHab4z1bZnvwFgsFbBM57ErOM-sxYoxLTiXoK0CErzuO6_wy-cBmtZs64OvwvmGYamJUpLKwGIdK_d103go_rYSbE7pmy59c0rfnNMPqrtOVQLAP4UQVHPNfgC1mH37</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Serreli, Luigi</creator><creator>Fadda, Mauro</creator><creator>Girau, Roberto</creator><creator>Ruiu, Pietro</creator><creator>Giusto, Daniele D.</creator><creator>Anedda, Matteo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8793-9015</orcidid><orcidid>https://orcid.org/0000-0003-4420-3363</orcidid><orcidid>https://orcid.org/0000-0002-6450-4609</orcidid><orcidid>https://orcid.org/0000-0003-1910-9551</orcidid><orcidid>https://orcid.org/0000-0002-0615-6546</orcidid><orcidid>https://orcid.org/0000-0002-1298-7960</orcidid></search><sort><creationdate>2024</creationdate><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><author>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Communications technology</topic><topic>Estimation</topic><topic>Fingerprinting</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Global navigation satellite system</topic><topic>Line-of-sight propagation</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Long Term Evolution</topic><topic>LTE</topic><topic>Machine learning</topic><topic>Pattern matching</topic><topic>Smartphones</topic><topic>Synthetic data</topic><topic>Tracking systems</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serreli, Luigi</creatorcontrib><creatorcontrib>Fadda, Mauro</creatorcontrib><creatorcontrib>Girau, Roberto</creatorcontrib><creatorcontrib>Ruiu, Pietro</creatorcontrib><creatorcontrib>Giusto, Daniele D.</creatorcontrib><creatorcontrib>Anedda, Matteo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serreli, Luigi</au><au>Fadda, Mauro</au><au>Girau, Roberto</au><au>Ruiu, Pietro</au><au>Giusto, Daniele D.</au><au>Anedda, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>82083</spage><epage>82094</epage><pages>82083-82094</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3411293</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8793-9015</orcidid><orcidid>https://orcid.org/0000-0003-4420-3363</orcidid><orcidid>https://orcid.org/0000-0002-6450-4609</orcidid><orcidid>https://orcid.org/0000-0003-1910-9551</orcidid><orcidid>https://orcid.org/0000-0002-0615-6546</orcidid><orcidid>https://orcid.org/0000-0002-1298-7960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.82083-82094 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10552848 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Communications technology Estimation Fingerprinting generative adversarial network Generative adversarial networks Global navigation satellite system Line-of-sight propagation Localization Location awareness Long Term Evolution LTE Machine learning Pattern matching Smartphones Synthetic data Tracking systems Wireless fidelity |
title | A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Adversarial%20Network%20(GAN)%20Fingerprint%20Approach%20Over%20LTE&rft.jtitle=IEEE%20access&rft.au=Serreli,%20Luigi&rft.date=2024&rft.volume=12&rft.spage=82083&rft.epage=82094&rft.pages=82083-82094&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3411293&rft_dat=%3Cproquest_ieee_%3E3068177626%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068177626&rft_id=info:pmid/&rft_ieee_id=10552848&rft_doaj_id=oai_doaj_org_article_a067e3b8c9df44baa073385446e8a7e1&rfr_iscdi=true |