A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE

Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.82083-82094
Hauptverfasser: Serreli, Luigi, Fadda, Mauro, Girau, Roberto, Ruiu, Pietro, Giusto, Daniele D., Anedda, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82094
container_issue
container_start_page 82083
container_title IEEE access
container_volume 12
creator Serreli, Luigi
Fadda, Mauro
Girau, Roberto
Ruiu, Pietro
Giusto, Daniele D.
Anedda, Matteo
description Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.
doi_str_mv 10.1109/ACCESS.2024.3411293
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10552848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552848</ieee_id><doaj_id>oai_doaj_org_article_a067e3b8c9df44baa073385446e8a7e1</doaj_id><sourcerecordid>3068177626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMgv0EMTL3oA93u3x6YCkhA4gOfNtjvFIra4LRj_vYslxrnM5OW9NzMPoVuCR4Tg-ClJ0_FqNaKY8hHjhNCYXaAeJTIeMsHk5b_5Gg2aZotD6QAJ1UPPSTSFCrxtyyNEiTuCb6wv7S5aQPtV-_foYZosHqNJWW3A731ZtVGy3_va5m_RMrCj-Xp8g64Ku2tgcO599DoZr9OX4Xw5naXJfJgzEbdDKhylRUGUs1ppAcIpAMZdoZ0kGUiKATOJsXCx47LQKsMk1-GdDHgmOGV9NOt8XW23JhzzYf23qW1pfoHab4z1bZnvwFgsFbBM57ErOM-sxYoxLTiXoK0CErzuO6_wy-cBmtZs64OvwvmGYamJUpLKwGIdK_d103go_rYSbE7pmy59c0rfnNMPqrtOVQLAP4UQVHPNfgC1mH37</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068177626</pqid></control><display><type>article</type><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</creator><creatorcontrib>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</creatorcontrib><description>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3411293</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communications technology ; Estimation ; Fingerprinting ; generative adversarial network ; Generative adversarial networks ; Global navigation satellite system ; Line-of-sight propagation ; Localization ; Location awareness ; Long Term Evolution ; LTE ; Machine learning ; Pattern matching ; Smartphones ; Synthetic data ; Tracking systems ; Wireless fidelity</subject><ispartof>IEEE access, 2024, Vol.12, p.82083-82094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</cites><orcidid>0000-0002-8793-9015 ; 0000-0003-4420-3363 ; 0000-0002-6450-4609 ; 0000-0003-1910-9551 ; 0000-0002-0615-6546 ; 0000-0002-1298-7960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552848$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Serreli, Luigi</creatorcontrib><creatorcontrib>Fadda, Mauro</creatorcontrib><creatorcontrib>Girau, Roberto</creatorcontrib><creatorcontrib>Ruiu, Pietro</creatorcontrib><creatorcontrib>Giusto, Daniele D.</creatorcontrib><creatorcontrib>Anedda, Matteo</creatorcontrib><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</description><subject>Algorithms</subject><subject>Communications technology</subject><subject>Estimation</subject><subject>Fingerprinting</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Global navigation satellite system</subject><subject>Line-of-sight propagation</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Long Term Evolution</subject><subject>LTE</subject><subject>Machine learning</subject><subject>Pattern matching</subject><subject>Smartphones</subject><subject>Synthetic data</subject><subject>Tracking systems</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMgv0EMTL3oA93u3x6YCkhA4gOfNtjvFIra4LRj_vYslxrnM5OW9NzMPoVuCR4Tg-ClJ0_FqNaKY8hHjhNCYXaAeJTIeMsHk5b_5Gg2aZotD6QAJ1UPPSTSFCrxtyyNEiTuCb6wv7S5aQPtV-_foYZosHqNJWW3A731ZtVGy3_va5m_RMrCj-Xp8g64Ku2tgcO599DoZr9OX4Xw5naXJfJgzEbdDKhylRUGUs1ppAcIpAMZdoZ0kGUiKATOJsXCx47LQKsMk1-GdDHgmOGV9NOt8XW23JhzzYf23qW1pfoHab4z1bZnvwFgsFbBM57ErOM-sxYoxLTiXoK0CErzuO6_wy-cBmtZs64OvwvmGYamJUpLKwGIdK_d103go_rYSbE7pmy59c0rfnNMPqrtOVQLAP4UQVHPNfgC1mH37</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Serreli, Luigi</creator><creator>Fadda, Mauro</creator><creator>Girau, Roberto</creator><creator>Ruiu, Pietro</creator><creator>Giusto, Daniele D.</creator><creator>Anedda, Matteo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8793-9015</orcidid><orcidid>https://orcid.org/0000-0003-4420-3363</orcidid><orcidid>https://orcid.org/0000-0002-6450-4609</orcidid><orcidid>https://orcid.org/0000-0003-1910-9551</orcidid><orcidid>https://orcid.org/0000-0002-0615-6546</orcidid><orcidid>https://orcid.org/0000-0002-1298-7960</orcidid></search><sort><creationdate>2024</creationdate><title>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</title><author>Serreli, Luigi ; Fadda, Mauro ; Girau, Roberto ; Ruiu, Pietro ; Giusto, Daniele D. ; Anedda, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-25d22ff17da8785e5d7ee34df8d61be620e036005d9d46f87b01c8293be4b5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Communications technology</topic><topic>Estimation</topic><topic>Fingerprinting</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Global navigation satellite system</topic><topic>Line-of-sight propagation</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Long Term Evolution</topic><topic>LTE</topic><topic>Machine learning</topic><topic>Pattern matching</topic><topic>Smartphones</topic><topic>Synthetic data</topic><topic>Tracking systems</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serreli, Luigi</creatorcontrib><creatorcontrib>Fadda, Mauro</creatorcontrib><creatorcontrib>Girau, Roberto</creatorcontrib><creatorcontrib>Ruiu, Pietro</creatorcontrib><creatorcontrib>Giusto, Daniele D.</creatorcontrib><creatorcontrib>Anedda, Matteo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serreli, Luigi</au><au>Fadda, Mauro</au><au>Girau, Roberto</au><au>Ruiu, Pietro</au><au>Giusto, Daniele D.</au><au>Anedda, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>82083</spage><epage>82094</epage><pages>82083-82094</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advancements in communication technologies have significantly enhanced localization techniques, improving both accuracy and operating modes. Initially, localization methods relied on global navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios. Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods, a pattern matching techniques based on signal power estimation from target devices and distance estimation from reference points, can be seen as a valid and promising alternative. However, these methods face limitations due to extensive measurement campaigns needed to establish accurate sampling systems within specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal performance. This study introduces a novel fingerprinting method capable of passive operation, involving all smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine learning models' capabilities. Additionally, the offline phase's cost-effectiveness is improved by integrating a Bayesian system as a secondary machine learning component.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3411293</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8793-9015</orcidid><orcidid>https://orcid.org/0000-0003-4420-3363</orcidid><orcidid>https://orcid.org/0000-0002-6450-4609</orcidid><orcidid>https://orcid.org/0000-0003-1910-9551</orcidid><orcidid>https://orcid.org/0000-0002-0615-6546</orcidid><orcidid>https://orcid.org/0000-0002-1298-7960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.82083-82094
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10552848
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Communications technology
Estimation
Fingerprinting
generative adversarial network
Generative adversarial networks
Global navigation satellite system
Line-of-sight propagation
Localization
Location awareness
Long Term Evolution
LTE
Machine learning
Pattern matching
Smartphones
Synthetic data
Tracking systems
Wireless fidelity
title A Generative Adversarial Network (GAN) Fingerprint Approach Over LTE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Adversarial%20Network%20(GAN)%20Fingerprint%20Approach%20Over%20LTE&rft.jtitle=IEEE%20access&rft.au=Serreli,%20Luigi&rft.date=2024&rft.volume=12&rft.spage=82083&rft.epage=82094&rft.pages=82083-82094&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3411293&rft_dat=%3Cproquest_ieee_%3E3068177626%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068177626&rft_id=info:pmid/&rft_ieee_id=10552848&rft_doaj_id=oai_doaj_org_article_a067e3b8c9df44baa073385446e8a7e1&rfr_iscdi=true