Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features

Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.84241-84252
Hauptverfasser: Magherini, Roberto, Servi, Michaela, Volpe, Yary, Campi, Riccardo, Buonamici, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84252
container_issue
container_start_page 84241
container_title IEEE access
container_volume 12
creator Magherini, Roberto
Servi, Michaela
Volpe, Yary
Campi, Riccardo
Buonamici, Francesco
description Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.
doi_str_mv 10.1109/ACCESS.2024.3412655
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10552759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552759</ieee_id><doaj_id>oai_doaj_org_article_21a8f35d06c54ca38cc77b06fbe0995c</doaj_id><sourcerecordid>3070779814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXtIdAz9rd7Ff2KFFbqVCoel42m4ld0STdTQ7--66NiHOZ4c17bwZeFD1jNMEYybdpls3X60mCEjohFCecsbtokGAux4QRfn8zP0Yj7_coVBogJgbRamZ9a6tdZ_1PaPGnLSo4xZvuWLt4c2rAx1t_XnzrwtZHa3y8AN12Lix0VcQzgOaKPEUPpT54GF36MNou5pvsY7z6el9m09XYECbbMZcUS4FomuS5LBOqU5ybXAgupcAcEU4xlAXLUyIIUMZTA9wITZGAwJc5GUbL3reo9V41zh61O6laW_UP1G6ntGutOYBKsE5LwgrEDaNGk9QYIXLEyxyQlMwEr9feq3H1bwe-Vfu6c1V4XxEkkBAyxTSwSM8yrvbeQXm9ipE6p6D6FNQ5BXVJIaheepUFgBsFY4lgkvwB16KCDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070779814</pqid></control><display><type>article</type><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</creator><creatorcontrib>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</creatorcontrib><description>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3412655</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cancer ; Cancer classification ; Classification algorithms ; clear cell renal cell carcinoma ; Computed tomography ; Computer aided diagnosis ; Datasets ; Deep learning ; Feature extraction ; Kidney stones ; Medical imaging ; oncocytoma ; Radiomics ; Tumors</subject><ispartof>IEEE access, 2024, Vol.12, p.84241-84252</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</cites><orcidid>0000-0002-4606-5251 ; 0000-0002-5668-1912 ; 0000-0002-4071-6615 ; 0000-0001-5186-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552759$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Magherini, Roberto</creatorcontrib><creatorcontrib>Servi, Michaela</creatorcontrib><creatorcontrib>Volpe, Yary</creatorcontrib><creatorcontrib>Campi, Riccardo</creatorcontrib><creatorcontrib>Buonamici, Francesco</creatorcontrib><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><title>IEEE access</title><addtitle>Access</addtitle><description>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</description><subject>Cancer</subject><subject>Cancer classification</subject><subject>Classification algorithms</subject><subject>clear cell renal cell carcinoma</subject><subject>Computed tomography</subject><subject>Computer aided diagnosis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kidney stones</subject><subject>Medical imaging</subject><subject>oncocytoma</subject><subject>Radiomics</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXtIdAz9rd7Ff2KFFbqVCoel42m4ld0STdTQ7--66NiHOZ4c17bwZeFD1jNMEYybdpls3X60mCEjohFCecsbtokGAux4QRfn8zP0Yj7_coVBogJgbRamZ9a6tdZ_1PaPGnLSo4xZvuWLt4c2rAx1t_XnzrwtZHa3y8AN12Lix0VcQzgOaKPEUPpT54GF36MNou5pvsY7z6el9m09XYECbbMZcUS4FomuS5LBOqU5ybXAgupcAcEU4xlAXLUyIIUMZTA9wITZGAwJc5GUbL3reo9V41zh61O6laW_UP1G6ntGutOYBKsE5LwgrEDaNGk9QYIXLEyxyQlMwEr9feq3H1bwe-Vfu6c1V4XxEkkBAyxTSwSM8yrvbeQXm9ipE6p6D6FNQ5BXVJIaheepUFgBsFY4lgkvwB16KCDA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Magherini, Roberto</creator><creator>Servi, Michaela</creator><creator>Volpe, Yary</creator><creator>Campi, Riccardo</creator><creator>Buonamici, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4606-5251</orcidid><orcidid>https://orcid.org/0000-0002-5668-1912</orcidid><orcidid>https://orcid.org/0000-0002-4071-6615</orcidid><orcidid>https://orcid.org/0000-0001-5186-9724</orcidid></search><sort><creationdate>2024</creationdate><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><author>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Cancer classification</topic><topic>Classification algorithms</topic><topic>clear cell renal cell carcinoma</topic><topic>Computed tomography</topic><topic>Computer aided diagnosis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kidney stones</topic><topic>Medical imaging</topic><topic>oncocytoma</topic><topic>Radiomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magherini, Roberto</creatorcontrib><creatorcontrib>Servi, Michaela</creatorcontrib><creatorcontrib>Volpe, Yary</creatorcontrib><creatorcontrib>Campi, Riccardo</creatorcontrib><creatorcontrib>Buonamici, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magherini, Roberto</au><au>Servi, Michaela</au><au>Volpe, Yary</au><au>Campi, Riccardo</au><au>Buonamici, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>84241</spage><epage>84252</epage><pages>84241-84252</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3412655</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4606-5251</orcidid><orcidid>https://orcid.org/0000-0002-5668-1912</orcidid><orcidid>https://orcid.org/0000-0002-4071-6615</orcidid><orcidid>https://orcid.org/0000-0001-5186-9724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.84241-84252
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10552759
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cancer
Cancer classification
Classification algorithms
clear cell renal cell carcinoma
Computed tomography
Computer aided diagnosis
Datasets
Deep learning
Feature extraction
Kidney stones
Medical imaging
oncocytoma
Radiomics
Tumors
title Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20Kidney%20Tumor%20Types%20Using%20Radiomics%20Features%20and%20Deep%20Features&rft.jtitle=IEEE%20access&rft.au=Magherini,%20Roberto&rft.date=2024&rft.volume=12&rft.spage=84241&rft.epage=84252&rft.pages=84241-84252&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3412655&rft_dat=%3Cproquest_ieee_%3E3070779814%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070779814&rft_id=info:pmid/&rft_ieee_id=10552759&rft_doaj_id=oai_doaj_org_article_21a8f35d06c54ca38cc77b06fbe0995c&rfr_iscdi=true