Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features
Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully aut...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.84241-84252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84252 |
---|---|
container_issue | |
container_start_page | 84241 |
container_title | IEEE access |
container_volume | 12 |
creator | Magherini, Roberto Servi, Michaela Volpe, Yary Campi, Riccardo Buonamici, Francesco |
description | Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy. |
doi_str_mv | 10.1109/ACCESS.2024.3412655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10552759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552759</ieee_id><doaj_id>oai_doaj_org_article_21a8f35d06c54ca38cc77b06fbe0995c</doaj_id><sourcerecordid>3070779814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXtIdAz9rd7Ff2KFFbqVCoel42m4ld0STdTQ7--66NiHOZ4c17bwZeFD1jNMEYybdpls3X60mCEjohFCecsbtokGAux4QRfn8zP0Yj7_coVBogJgbRamZ9a6tdZ_1PaPGnLSo4xZvuWLt4c2rAx1t_XnzrwtZHa3y8AN12Lix0VcQzgOaKPEUPpT54GF36MNou5pvsY7z6el9m09XYECbbMZcUS4FomuS5LBOqU5ybXAgupcAcEU4xlAXLUyIIUMZTA9wITZGAwJc5GUbL3reo9V41zh61O6laW_UP1G6ntGutOYBKsE5LwgrEDaNGk9QYIXLEyxyQlMwEr9feq3H1bwe-Vfu6c1V4XxEkkBAyxTSwSM8yrvbeQXm9ipE6p6D6FNQ5BXVJIaheepUFgBsFY4lgkvwB16KCDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070779814</pqid></control><display><type>article</type><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</creator><creatorcontrib>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</creatorcontrib><description>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3412655</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cancer ; Cancer classification ; Classification algorithms ; clear cell renal cell carcinoma ; Computed tomography ; Computer aided diagnosis ; Datasets ; Deep learning ; Feature extraction ; Kidney stones ; Medical imaging ; oncocytoma ; Radiomics ; Tumors</subject><ispartof>IEEE access, 2024, Vol.12, p.84241-84252</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</cites><orcidid>0000-0002-4606-5251 ; 0000-0002-5668-1912 ; 0000-0002-4071-6615 ; 0000-0001-5186-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552759$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Magherini, Roberto</creatorcontrib><creatorcontrib>Servi, Michaela</creatorcontrib><creatorcontrib>Volpe, Yary</creatorcontrib><creatorcontrib>Campi, Riccardo</creatorcontrib><creatorcontrib>Buonamici, Francesco</creatorcontrib><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><title>IEEE access</title><addtitle>Access</addtitle><description>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</description><subject>Cancer</subject><subject>Cancer classification</subject><subject>Classification algorithms</subject><subject>clear cell renal cell carcinoma</subject><subject>Computed tomography</subject><subject>Computer aided diagnosis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kidney stones</subject><subject>Medical imaging</subject><subject>oncocytoma</subject><subject>Radiomics</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXtIdAz9rd7Ff2KFFbqVCoel42m4ld0STdTQ7--66NiHOZ4c17bwZeFD1jNMEYybdpls3X60mCEjohFCecsbtokGAux4QRfn8zP0Yj7_coVBogJgbRamZ9a6tdZ_1PaPGnLSo4xZvuWLt4c2rAx1t_XnzrwtZHa3y8AN12Lix0VcQzgOaKPEUPpT54GF36MNou5pvsY7z6el9m09XYECbbMZcUS4FomuS5LBOqU5ybXAgupcAcEU4xlAXLUyIIUMZTA9wITZGAwJc5GUbL3reo9V41zh61O6laW_UP1G6ntGutOYBKsE5LwgrEDaNGk9QYIXLEyxyQlMwEr9feq3H1bwe-Vfu6c1V4XxEkkBAyxTSwSM8yrvbeQXm9ipE6p6D6FNQ5BXVJIaheepUFgBsFY4lgkvwB16KCDA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Magherini, Roberto</creator><creator>Servi, Michaela</creator><creator>Volpe, Yary</creator><creator>Campi, Riccardo</creator><creator>Buonamici, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4606-5251</orcidid><orcidid>https://orcid.org/0000-0002-5668-1912</orcidid><orcidid>https://orcid.org/0000-0002-4071-6615</orcidid><orcidid>https://orcid.org/0000-0001-5186-9724</orcidid></search><sort><creationdate>2024</creationdate><title>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</title><author>Magherini, Roberto ; Servi, Michaela ; Volpe, Yary ; Campi, Riccardo ; Buonamici, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6941970482bb9f24a81bcb7769971603641efd5b8373e4568ce6c7a407eb9f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Cancer classification</topic><topic>Classification algorithms</topic><topic>clear cell renal cell carcinoma</topic><topic>Computed tomography</topic><topic>Computer aided diagnosis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kidney stones</topic><topic>Medical imaging</topic><topic>oncocytoma</topic><topic>Radiomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magherini, Roberto</creatorcontrib><creatorcontrib>Servi, Michaela</creatorcontrib><creatorcontrib>Volpe, Yary</creatorcontrib><creatorcontrib>Campi, Riccardo</creatorcontrib><creatorcontrib>Buonamici, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magherini, Roberto</au><au>Servi, Michaela</au><au>Volpe, Yary</au><au>Campi, Riccardo</au><au>Buonamici, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>84241</spage><epage>84252</epage><pages>84241-84252</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is proposed that can provide decision support for physicians to distinguish between these two types of masses in the most critical cases. In this work three approaches for the development of this tool are implemented and compared, specifically two approaches are based on the use of radiomic features and one on the use of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different types of features. The architectures are trained and tested by combining two different datasets, the public dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77% balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3412655</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4606-5251</orcidid><orcidid>https://orcid.org/0000-0002-5668-1912</orcidid><orcidid>https://orcid.org/0000-0002-4071-6615</orcidid><orcidid>https://orcid.org/0000-0001-5186-9724</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.84241-84252 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10552759 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cancer Cancer classification Classification algorithms clear cell renal cell carcinoma Computed tomography Computer aided diagnosis Datasets Deep learning Feature extraction Kidney stones Medical imaging oncocytoma Radiomics Tumors |
title | Distinguishing Kidney Tumor Types Using Radiomics Features and Deep Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20Kidney%20Tumor%20Types%20Using%20Radiomics%20Features%20and%20Deep%20Features&rft.jtitle=IEEE%20access&rft.au=Magherini,%20Roberto&rft.date=2024&rft.volume=12&rft.spage=84241&rft.epage=84252&rft.pages=84241-84252&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3412655&rft_dat=%3Cproquest_ieee_%3E3070779814%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070779814&rft_id=info:pmid/&rft_ieee_id=10552759&rft_doaj_id=oai_doaj_org_article_21a8f35d06c54ca38cc77b06fbe0995c&rfr_iscdi=true |