Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes

Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-08, Vol.24 (15), p.24086-24095
Hauptverfasser: Kiran, Samia, Riaz, Qaiser, Hussain, Mehdi, Zeeshan, Muhammad, Kruger, Bjorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24095
container_issue 15
container_start_page 24086
container_title IEEE sensors journal
container_volume 24
creator Kiran, Samia
Riaz, Qaiser
Hussain, Mehdi
Zeeshan, Muhammad
Kruger, Bjorn
description Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and {F}1 -score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.
doi_str_mv 10.1109/JSEN.2024.3407835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10552639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552639</ieee_id><sourcerecordid>3086434015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsEY_gOBhwXPq_s3uepPaaqVYoS16WzbJpKSkSd1NC357E9uDp3kw783wfgjdUjKklJiHt8X4fcgIE0MuiNJcnqEBlVLHVAl93mtOYsHV1yW6CmFDCDVKqgFaruoDlFVZr_HEVRWe-3Jd1uERz-AA3q37xSc479IK8ALq0PiA2wY_QwtZiz88xNPtznXyLz5y-wDhGl0Urgpwc5oRWk3Gy9FrPJu_TEdPszhjImljyanhzCR5boyjSZ6lNC3SgmohtADFnTSkSDMmJQWWEA1GQSZ1zoBJQlXOI3R_vLvzzfceQms3zd7X3UvLiU5Eh6LrHSF6dGW-CcFDYXe-3Dr_YymxPTzbw7M9PHuC12XujpkSAP75pWQJN_wXo9JqAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086434015</pqid></control><display><type>article</type><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><source>IEEE Electronic Library (IEL)</source><creator>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</creator><creatorcontrib>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</creatorcontrib><description>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3407835</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Angular velocity ; Artificial neural networks ; Datasets ; Deep learning for fall detection ; Fall detection ; fall prevention ; inertial measurement units (IMUs) ; inertial sensors ; Injuries ; Injury prevention ; Older adults ; Older people ; pre-impact fall ; Sensors ; Three-dimensional displays ; Wearable sensors</subject><ispartof>IEEE sensors journal, 2024-08, Vol.24 (15), p.24086-24095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</cites><orcidid>0009-0009-8801-6181 ; 0000-0003-3722-4764 ; 0000-0003-4417-1365 ; 0000-0002-1596-6487 ; 0000-0003-4321-2532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiran, Samia</creatorcontrib><creatorcontrib>Riaz, Qaiser</creatorcontrib><creatorcontrib>Hussain, Mehdi</creatorcontrib><creatorcontrib>Zeeshan, Muhammad</creatorcontrib><creatorcontrib>Kruger, Bjorn</creatorcontrib><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</description><subject>Accelerometers</subject><subject>Angular velocity</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Deep learning for fall detection</subject><subject>Fall detection</subject><subject>fall prevention</subject><subject>inertial measurement units (IMUs)</subject><subject>inertial sensors</subject><subject>Injuries</subject><subject>Injury prevention</subject><subject>Older adults</subject><subject>Older people</subject><subject>pre-impact fall</subject><subject>Sensors</subject><subject>Three-dimensional displays</subject><subject>Wearable sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsEY_gOBhwXPq_s3uepPaaqVYoS16WzbJpKSkSd1NC357E9uDp3kw783wfgjdUjKklJiHt8X4fcgIE0MuiNJcnqEBlVLHVAl93mtOYsHV1yW6CmFDCDVKqgFaruoDlFVZr_HEVRWe-3Jd1uERz-AA3q37xSc479IK8ALq0PiA2wY_QwtZiz88xNPtznXyLz5y-wDhGl0Urgpwc5oRWk3Gy9FrPJu_TEdPszhjImljyanhzCR5boyjSZ6lNC3SgmohtADFnTSkSDMmJQWWEA1GQSZ1zoBJQlXOI3R_vLvzzfceQms3zd7X3UvLiU5Eh6LrHSF6dGW-CcFDYXe-3Dr_YymxPTzbw7M9PHuC12XujpkSAP75pWQJN_wXo9JqAA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kiran, Samia</creator><creator>Riaz, Qaiser</creator><creator>Hussain, Mehdi</creator><creator>Zeeshan, Muhammad</creator><creator>Kruger, Bjorn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8801-6181</orcidid><orcidid>https://orcid.org/0000-0003-3722-4764</orcidid><orcidid>https://orcid.org/0000-0003-4417-1365</orcidid><orcidid>https://orcid.org/0000-0002-1596-6487</orcidid><orcidid>https://orcid.org/0000-0003-4321-2532</orcidid></search><sort><creationdate>20240801</creationdate><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><author>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Angular velocity</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Deep learning for fall detection</topic><topic>Fall detection</topic><topic>fall prevention</topic><topic>inertial measurement units (IMUs)</topic><topic>inertial sensors</topic><topic>Injuries</topic><topic>Injury prevention</topic><topic>Older adults</topic><topic>Older people</topic><topic>pre-impact fall</topic><topic>Sensors</topic><topic>Three-dimensional displays</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiran, Samia</creatorcontrib><creatorcontrib>Riaz, Qaiser</creatorcontrib><creatorcontrib>Hussain, Mehdi</creatorcontrib><creatorcontrib>Zeeshan, Muhammad</creatorcontrib><creatorcontrib>Kruger, Bjorn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiran, Samia</au><au>Riaz, Qaiser</au><au>Hussain, Mehdi</au><au>Zeeshan, Muhammad</au><au>Kruger, Bjorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>24086</spage><epage>24095</epage><pages>24086-24095</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3407835</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-8801-6181</orcidid><orcidid>https://orcid.org/0000-0003-3722-4764</orcidid><orcidid>https://orcid.org/0000-0003-4417-1365</orcidid><orcidid>https://orcid.org/0000-0002-1596-6487</orcidid><orcidid>https://orcid.org/0000-0003-4321-2532</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-08, Vol.24 (15), p.24086-24095
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10552639
source IEEE Electronic Library (IEL)
subjects Accelerometers
Angular velocity
Artificial neural networks
Datasets
Deep learning for fall detection
Fall detection
fall prevention
inertial measurement units (IMUs)
inertial sensors
Injuries
Injury prevention
Older adults
Older people
pre-impact fall
Sensors
Three-dimensional displays
Wearable sensors
title Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Fall%20Origins:%20Leveraging%20Wearable%20Sensors%20to%20Detect%20Pre-Impact%20Fall%20Causes&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kiran,%20Samia&rft.date=2024-08-01&rft.volume=24&rft.issue=15&rft.spage=24086&rft.epage=24095&rft.pages=24086-24095&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3407835&rft_dat=%3Cproquest_RIE%3E3086434015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086434015&rft_id=info:pmid/&rft_ieee_id=10552639&rfr_iscdi=true