Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes
Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-08, Vol.24 (15), p.24086-24095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24095 |
---|---|
container_issue | 15 |
container_start_page | 24086 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Kiran, Samia Riaz, Qaiser Hussain, Mehdi Zeeshan, Muhammad Kruger, Bjorn |
description | Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and {F}1 -score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population. |
doi_str_mv | 10.1109/JSEN.2024.3407835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10552639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552639</ieee_id><sourcerecordid>3086434015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsEY_gOBhwXPq_s3uepPaaqVYoS16WzbJpKSkSd1NC357E9uDp3kw783wfgjdUjKklJiHt8X4fcgIE0MuiNJcnqEBlVLHVAl93mtOYsHV1yW6CmFDCDVKqgFaruoDlFVZr_HEVRWe-3Jd1uERz-AA3q37xSc479IK8ALq0PiA2wY_QwtZiz88xNPtznXyLz5y-wDhGl0Urgpwc5oRWk3Gy9FrPJu_TEdPszhjImljyanhzCR5boyjSZ6lNC3SgmohtADFnTSkSDMmJQWWEA1GQSZ1zoBJQlXOI3R_vLvzzfceQms3zd7X3UvLiU5Eh6LrHSF6dGW-CcFDYXe-3Dr_YymxPTzbw7M9PHuC12XujpkSAP75pWQJN_wXo9JqAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086434015</pqid></control><display><type>article</type><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><source>IEEE Electronic Library (IEL)</source><creator>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</creator><creatorcontrib>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</creatorcontrib><description>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3407835</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Angular velocity ; Artificial neural networks ; Datasets ; Deep learning for fall detection ; Fall detection ; fall prevention ; inertial measurement units (IMUs) ; inertial sensors ; Injuries ; Injury prevention ; Older adults ; Older people ; pre-impact fall ; Sensors ; Three-dimensional displays ; Wearable sensors</subject><ispartof>IEEE sensors journal, 2024-08, Vol.24 (15), p.24086-24095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</cites><orcidid>0009-0009-8801-6181 ; 0000-0003-3722-4764 ; 0000-0003-4417-1365 ; 0000-0002-1596-6487 ; 0000-0003-4321-2532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiran, Samia</creatorcontrib><creatorcontrib>Riaz, Qaiser</creatorcontrib><creatorcontrib>Hussain, Mehdi</creatorcontrib><creatorcontrib>Zeeshan, Muhammad</creatorcontrib><creatorcontrib>Kruger, Bjorn</creatorcontrib><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</description><subject>Accelerometers</subject><subject>Angular velocity</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Deep learning for fall detection</subject><subject>Fall detection</subject><subject>fall prevention</subject><subject>inertial measurement units (IMUs)</subject><subject>inertial sensors</subject><subject>Injuries</subject><subject>Injury prevention</subject><subject>Older adults</subject><subject>Older people</subject><subject>pre-impact fall</subject><subject>Sensors</subject><subject>Three-dimensional displays</subject><subject>Wearable sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsEY_gOBhwXPq_s3uepPaaqVYoS16WzbJpKSkSd1NC357E9uDp3kw783wfgjdUjKklJiHt8X4fcgIE0MuiNJcnqEBlVLHVAl93mtOYsHV1yW6CmFDCDVKqgFaruoDlFVZr_HEVRWe-3Jd1uERz-AA3q37xSc479IK8ALq0PiA2wY_QwtZiz88xNPtznXyLz5y-wDhGl0Urgpwc5oRWk3Gy9FrPJu_TEdPszhjImljyanhzCR5boyjSZ6lNC3SgmohtADFnTSkSDMmJQWWEA1GQSZ1zoBJQlXOI3R_vLvzzfceQms3zd7X3UvLiU5Eh6LrHSF6dGW-CcFDYXe-3Dr_YymxPTzbw7M9PHuC12XujpkSAP75pWQJN_wXo9JqAA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kiran, Samia</creator><creator>Riaz, Qaiser</creator><creator>Hussain, Mehdi</creator><creator>Zeeshan, Muhammad</creator><creator>Kruger, Bjorn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8801-6181</orcidid><orcidid>https://orcid.org/0000-0003-3722-4764</orcidid><orcidid>https://orcid.org/0000-0003-4417-1365</orcidid><orcidid>https://orcid.org/0000-0002-1596-6487</orcidid><orcidid>https://orcid.org/0000-0003-4321-2532</orcidid></search><sort><creationdate>20240801</creationdate><title>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</title><author>Kiran, Samia ; Riaz, Qaiser ; Hussain, Mehdi ; Zeeshan, Muhammad ; Kruger, Bjorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-53193296dd99a16dcb1bfbf184484e73a590fbc2551e2608e97ec58d2e25017d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Angular velocity</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Deep learning for fall detection</topic><topic>Fall detection</topic><topic>fall prevention</topic><topic>inertial measurement units (IMUs)</topic><topic>inertial sensors</topic><topic>Injuries</topic><topic>Injury prevention</topic><topic>Older adults</topic><topic>Older people</topic><topic>pre-impact fall</topic><topic>Sensors</topic><topic>Three-dimensional displays</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiran, Samia</creatorcontrib><creatorcontrib>Riaz, Qaiser</creatorcontrib><creatorcontrib>Hussain, Mehdi</creatorcontrib><creatorcontrib>Zeeshan, Muhammad</creatorcontrib><creatorcontrib>Kruger, Bjorn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiran, Samia</au><au>Riaz, Qaiser</au><au>Hussain, Mehdi</au><au>Zeeshan, Muhammad</au><au>Kruger, Bjorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>24086</spage><epage>24095</epage><pages>24086-24095</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Falling poses a significant challenge to the health and well-being of the elderly and people with various disabilities. Precise and prompt fall detection plays a crucial role in preventing falls and mitigating the impact of injuries. In this research, we propose a deep classifier for pre-impact fall detection which can detect a fall in the pre-impact phase with an inference time of 46-52 ms. The proposed classifier is an ensemble of convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs) with residual connections. We validated the performance of the proposed classifier on a comprehensive, publicly available pre-impact fall dataset. The dataset covers 36 diverse activities, including 15 types of fall-related activities and 21 types of activities of daily living (ADLs). Furthermore, we evaluated the proposed model using three different inputs of varying dimensions: 6-D input (comprising 3-D accelerations and 3-D angular velocities), 3-D input (3-D accelerations), and 1-D input (magnitude of 3-D accelerations). The reduction in the input space from 6-D to 1-D is aimed at minimizing the computation cost. We have attained commendable results outperforming the state-of-the-art approaches by achieving an average accuracy and <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98% for 6-D input size. The potential implications of this research are particularly relevant in the realm of smart healthcare, with a focus on the elderly and differently abled population.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3407835</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-8801-6181</orcidid><orcidid>https://orcid.org/0000-0003-3722-4764</orcidid><orcidid>https://orcid.org/0000-0003-4417-1365</orcidid><orcidid>https://orcid.org/0000-0002-1596-6487</orcidid><orcidid>https://orcid.org/0000-0003-4321-2532</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-08, Vol.24 (15), p.24086-24095 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10552639 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Angular velocity Artificial neural networks Datasets Deep learning for fall detection Fall detection fall prevention inertial measurement units (IMUs) inertial sensors Injuries Injury prevention Older adults Older people pre-impact fall Sensors Three-dimensional displays Wearable sensors |
title | Unveiling Fall Origins: Leveraging Wearable Sensors to Detect Pre-Impact Fall Causes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Fall%20Origins:%20Leveraging%20Wearable%20Sensors%20to%20Detect%20Pre-Impact%20Fall%20Causes&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kiran,%20Samia&rft.date=2024-08-01&rft.volume=24&rft.issue=15&rft.spage=24086&rft.epage=24095&rft.pages=24086-24095&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3407835&rft_dat=%3Cproquest_RIE%3E3086434015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086434015&rft_id=info:pmid/&rft_ieee_id=10552639&rfr_iscdi=true |