VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification
Utilizing IoT devices for automated signal extraction and data processing is a cornerstone of Computer-Aided Diagnostics, addressing various clinical challenges. Among these, diagnosing osteoarthritis, a critical knee joint disorder early on is paramount to prevent severe joint damage. Vibroarthrogr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-06, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on consumer electronics |
container_volume | |
creator | A, Balajee R, Mahesh T V, Vinoth Kumar Kumar, V Dhilip Bhat, C Rohith |
description | Utilizing IoT devices for automated signal extraction and data processing is a cornerstone of Computer-Aided Diagnostics, addressing various clinical challenges. Among these, diagnosing osteoarthritis, a critical knee joint disorder early on is paramount to prevent severe joint damage. Vibroarthrography (VAG), a novel approach, leverages sound waves produced during knee joint movement to diagnose various stages of this disorder. This article presents a computational system based on VAG signals, seamlessly integrated with IoT devices for knee joint data extraction. Employing machine learning techniques facilitates the classification of osteoarthritis levels. By offering this system as consumer electronics, it reduces costs and radiation exposure compared to traditional clinical modalities. Our implementation gathered 187 clinical data points using the proposed computational system, integrating IoT devices to capture vibrations. Analyzing the recorded data involved computing various feature sets, enabling multiple classifications of osteoarthritis levels. Evaluation based on accuracy, precision, recall, and AUC demonstrated the efficacy of our proposed binary and multiclass classification models, indicating its potential as a mechanism for collecting and analyzing data for early-stage osteoarthritis detection. |
doi_str_mv | 10.1109/TCE.2024.3410253 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10550156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10550156</ieee_id><sourcerecordid>10_1109_TCE_2024_3410253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-1fc48e900f758dc7eec15eb53deb8e6cbd3242be3edb6cd1afae88f0ac73bf6c3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzB4Y0rxI3bcsaSlIFXq0MIaOc41GOVR2S6iSPx30sfAdKVzv3OGD6FbSkaUkvHDOp-NGGHpiKeUMMHP0IAKoZKUsuwcDQgZq4QTyS_RVQifhNBUMDVAv2-TOV6591bX-FEHqHDeNZtt1NF1-2y1CxEabDvfP9qwbcDfB_waXe1-DgyewpczELBr8bJnO-3jh3fRBTzVUePZd_TaHEjd9uu1DsFZZw7la3RhdR3g5nSHaP00W-fPyWI5f8kni8RIJhNqTapgTIjNhKpMBmCogFLwCkoF0pQVZykrgUNVSlNRbTUoZYk2GS-tNHyIyHHW-C4ED7bYeNdovysoKfb2it5esbdXnOz1lbtjxQHAP1wIQoXkf-JAb4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification</title><source>IEEE Electronic Library (IEL)</source><creator>A, Balajee ; R, Mahesh T ; V, Vinoth Kumar ; Kumar, V Dhilip ; Bhat, C Rohith</creator><creatorcontrib>A, Balajee ; R, Mahesh T ; V, Vinoth Kumar ; Kumar, V Dhilip ; Bhat, C Rohith</creatorcontrib><description>Utilizing IoT devices for automated signal extraction and data processing is a cornerstone of Computer-Aided Diagnostics, addressing various clinical challenges. Among these, diagnosing osteoarthritis, a critical knee joint disorder early on is paramount to prevent severe joint damage. Vibroarthrography (VAG), a novel approach, leverages sound waves produced during knee joint movement to diagnose various stages of this disorder. This article presents a computational system based on VAG signals, seamlessly integrated with IoT devices for knee joint data extraction. Employing machine learning techniques facilitates the classification of osteoarthritis levels. By offering this system as consumer electronics, it reduces costs and radiation exposure compared to traditional clinical modalities. Our implementation gathered 187 clinical data points using the proposed computational system, integrating IoT devices to capture vibrations. Analyzing the recorded data involved computing various feature sets, enabling multiple classifications of osteoarthritis levels. Evaluation based on accuracy, precision, recall, and AUC demonstrated the efficacy of our proposed binary and multiclass classification models, indicating its potential as a mechanism for collecting and analyzing data for early-stage osteoarthritis detection.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3410253</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Consumer electronics ; IoT ; Machine Learning ; Mathematical models ; Monitoring ; Osteoarthritis ; Sensors ; Signal analysis ; Vibrations ; Vibroarthrography ; Wearable devices</subject><ispartof>IEEE transactions on consumer electronics, 2024-06, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4161-8694 ; 0000-0002-5589-8992 ; 0000-0003-1070-3212 ; 0000-0003-3920-7597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10550156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10550156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>A, Balajee</creatorcontrib><creatorcontrib>R, Mahesh T</creatorcontrib><creatorcontrib>V, Vinoth Kumar</creatorcontrib><creatorcontrib>Kumar, V Dhilip</creatorcontrib><creatorcontrib>Bhat, C Rohith</creatorcontrib><title>VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Utilizing IoT devices for automated signal extraction and data processing is a cornerstone of Computer-Aided Diagnostics, addressing various clinical challenges. Among these, diagnosing osteoarthritis, a critical knee joint disorder early on is paramount to prevent severe joint damage. Vibroarthrography (VAG), a novel approach, leverages sound waves produced during knee joint movement to diagnose various stages of this disorder. This article presents a computational system based on VAG signals, seamlessly integrated with IoT devices for knee joint data extraction. Employing machine learning techniques facilitates the classification of osteoarthritis levels. By offering this system as consumer electronics, it reduces costs and radiation exposure compared to traditional clinical modalities. Our implementation gathered 187 clinical data points using the proposed computational system, integrating IoT devices to capture vibrations. Analyzing the recorded data involved computing various feature sets, enabling multiple classifications of osteoarthritis levels. Evaluation based on accuracy, precision, recall, and AUC demonstrated the efficacy of our proposed binary and multiclass classification models, indicating its potential as a mechanism for collecting and analyzing data for early-stage osteoarthritis detection.</description><subject>Consumer electronics</subject><subject>IoT</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Osteoarthritis</subject><subject>Sensors</subject><subject>Signal analysis</subject><subject>Vibrations</subject><subject>Vibroarthrography</subject><subject>Wearable devices</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzB4Y0rxI3bcsaSlIFXq0MIaOc41GOVR2S6iSPx30sfAdKVzv3OGD6FbSkaUkvHDOp-NGGHpiKeUMMHP0IAKoZKUsuwcDQgZq4QTyS_RVQifhNBUMDVAv2-TOV6591bX-FEHqHDeNZtt1NF1-2y1CxEabDvfP9qwbcDfB_waXe1-DgyewpczELBr8bJnO-3jh3fRBTzVUePZd_TaHEjd9uu1DsFZZw7la3RhdR3g5nSHaP00W-fPyWI5f8kni8RIJhNqTapgTIjNhKpMBmCogFLwCkoF0pQVZykrgUNVSlNRbTUoZYk2GS-tNHyIyHHW-C4ED7bYeNdovysoKfb2it5esbdXnOz1lbtjxQHAP1wIQoXkf-JAb4w</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>A, Balajee</creator><creator>R, Mahesh T</creator><creator>V, Vinoth Kumar</creator><creator>Kumar, V Dhilip</creator><creator>Bhat, C Rohith</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4161-8694</orcidid><orcidid>https://orcid.org/0000-0002-5589-8992</orcidid><orcidid>https://orcid.org/0000-0003-1070-3212</orcidid><orcidid>https://orcid.org/0000-0003-3920-7597</orcidid></search><sort><creationdate>20240605</creationdate><title>VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification</title><author>A, Balajee ; R, Mahesh T ; V, Vinoth Kumar ; Kumar, V Dhilip ; Bhat, C Rohith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-1fc48e900f758dc7eec15eb53deb8e6cbd3242be3edb6cd1afae88f0ac73bf6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Consumer electronics</topic><topic>IoT</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Osteoarthritis</topic><topic>Sensors</topic><topic>Signal analysis</topic><topic>Vibrations</topic><topic>Vibroarthrography</topic><topic>Wearable devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A, Balajee</creatorcontrib><creatorcontrib>R, Mahesh T</creatorcontrib><creatorcontrib>V, Vinoth Kumar</creatorcontrib><creatorcontrib>Kumar, V Dhilip</creatorcontrib><creatorcontrib>Bhat, C Rohith</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>A, Balajee</au><au>R, Mahesh T</au><au>V, Vinoth Kumar</au><au>Kumar, V Dhilip</au><au>Bhat, C Rohith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-06-05</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Utilizing IoT devices for automated signal extraction and data processing is a cornerstone of Computer-Aided Diagnostics, addressing various clinical challenges. Among these, diagnosing osteoarthritis, a critical knee joint disorder early on is paramount to prevent severe joint damage. Vibroarthrography (VAG), a novel approach, leverages sound waves produced during knee joint movement to diagnose various stages of this disorder. This article presents a computational system based on VAG signals, seamlessly integrated with IoT devices for knee joint data extraction. Employing machine learning techniques facilitates the classification of osteoarthritis levels. By offering this system as consumer electronics, it reduces costs and radiation exposure compared to traditional clinical modalities. Our implementation gathered 187 clinical data points using the proposed computational system, integrating IoT devices to capture vibrations. Analyzing the recorded data involved computing various feature sets, enabling multiple classifications of osteoarthritis levels. Evaluation based on accuracy, precision, recall, and AUC demonstrated the efficacy of our proposed binary and multiclass classification models, indicating its potential as a mechanism for collecting and analyzing data for early-stage osteoarthritis detection.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2024.3410253</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4161-8694</orcidid><orcidid>https://orcid.org/0000-0002-5589-8992</orcidid><orcidid>https://orcid.org/0000-0003-1070-3212</orcidid><orcidid>https://orcid.org/0000-0003-3920-7597</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-06, p.1-1 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_ieee_primary_10550156 |
source | IEEE Electronic Library (IEL) |
subjects | Consumer electronics IoT Machine Learning Mathematical models Monitoring Osteoarthritis Sensors Signal analysis Vibrations Vibroarthrography Wearable devices |
title | VAG Signal Based Computational System for Consumer's Utilization Devices in Osteoarthritis Data Extraction and Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VAG%20Signal%20Based%20Computational%20System%20for%20Consumer's%20Utilization%20Devices%20in%20Osteoarthritis%20Data%20Extraction%20and%20Classification&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=A,%20Balajee&rft.date=2024-06-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3410253&rft_dat=%3Ccrossref_RIE%3E10_1109_TCE_2024_3410253%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10550156&rfr_iscdi=true |