Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation
Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand sub...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17382-17391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17391 |
---|---|
container_issue | 11 |
container_start_page | 17382 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Zhou, Wujie Cai, Yuqi Qiang, Fangfang |
description | Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network. |
doi_str_mv | 10.1109/TITS.2024.3404654 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10549923</ieee_id><sourcerecordid>10_1109_TITS_2024_3404654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhjdGExF9ABMP-wLFme3u0j0qCBJBE8Bzs6VTXC0s2VYJb28rHMwcZv6Z-SeTj7FbhB4imPvlZLnoCRCyF0uQWskz1kGlkggA9XlbCxkZUHDJrqrqs-lKhdhh85kPuw9f-vUhGn-7nHL-SvXehy_-4yx_2fp9Sfma-NBVtStLWzu_5YUPfD5-jIZ85kJoxILWG9rWf9NrdlHYsqKbU-6y99HTcvAcTd_Gk8HDNFqh0XXzDPU15lmfYtDCFokgozJFqHKpAfq5yACoCalXmGSZsUkiUZlMS6sbGXcZHu-ugq-qQEW6C25jwyFFSFsoaQslbaGkJyiN5-7ocUT0b19JY0Qc_wIOOF4e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</creator><creatorcontrib>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</creatorcontrib><description>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3404654</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer architecture ; Feature extraction ; Knowledge discovery ; Knowledge distillation ; Knowledge engineering ; Knowledge transfer ; mirror segmentation ; Mirrors ; Morphology ; morphology-guided network ; RGB-D ; Semantics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17382-17391</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</citedby><cites>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</cites><orcidid>0000-0002-3055-2493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10549923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10549923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Wujie</creatorcontrib><creatorcontrib>Cai, Yuqi</creatorcontrib><creatorcontrib>Qiang, Fangfang</creatorcontrib><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</description><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Feature extraction</subject><subject>Knowledge discovery</subject><subject>Knowledge distillation</subject><subject>Knowledge engineering</subject><subject>Knowledge transfer</subject><subject>mirror segmentation</subject><subject>Mirrors</subject><subject>Morphology</subject><subject>morphology-guided network</subject><subject>RGB-D</subject><subject>Semantics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhjdGExF9ABMP-wLFme3u0j0qCBJBE8Bzs6VTXC0s2VYJb28rHMwcZv6Z-SeTj7FbhB4imPvlZLnoCRCyF0uQWskz1kGlkggA9XlbCxkZUHDJrqrqs-lKhdhh85kPuw9f-vUhGn-7nHL-SvXehy_-4yx_2fp9Sfma-NBVtStLWzu_5YUPfD5-jIZ85kJoxILWG9rWf9NrdlHYsqKbU-6y99HTcvAcTd_Gk8HDNFqh0XXzDPU15lmfYtDCFokgozJFqHKpAfq5yACoCalXmGSZsUkiUZlMS6sbGXcZHu-ugq-qQEW6C25jwyFFSFsoaQslbaGkJyiN5-7ocUT0b19JY0Qc_wIOOF4e</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Wujie</creator><creator>Cai, Yuqi</creator><creator>Qiang, Fangfang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3055-2493</orcidid></search><sort><creationdate>202411</creationdate><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><author>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Feature extraction</topic><topic>Knowledge discovery</topic><topic>Knowledge distillation</topic><topic>Knowledge engineering</topic><topic>Knowledge transfer</topic><topic>mirror segmentation</topic><topic>Mirrors</topic><topic>Morphology</topic><topic>morphology-guided network</topic><topic>RGB-D</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wujie</creatorcontrib><creatorcontrib>Cai, Yuqi</creatorcontrib><creatorcontrib>Qiang, Fangfang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Wujie</au><au>Cai, Yuqi</au><au>Qiang, Fangfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17382</spage><epage>17391</epage><pages>17382-17391</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3404654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3055-2493</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17382-17391 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10549923 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computer architecture Feature extraction Knowledge discovery Knowledge distillation Knowledge engineering Knowledge transfer mirror segmentation Mirrors Morphology morphology-guided network RGB-D Semantics |
title | Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-Guided%20Network%20via%20Knowledge%20Distillation%20for%20RGB-D%20Mirror%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhou,%20Wujie&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17382&rft.epage=17391&rft.pages=17382-17391&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3404654&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3404654%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10549923&rfr_iscdi=true |