Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation

Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17382-17391
Hauptverfasser: Zhou, Wujie, Cai, Yuqi, Qiang, Fangfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17391
container_issue 11
container_start_page 17382
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Zhou, Wujie
Cai, Yuqi
Qiang, Fangfang
description Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.
doi_str_mv 10.1109/TITS.2024.3404654
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10549923</ieee_id><sourcerecordid>10_1109_TITS_2024_3404654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhjdGExF9ABMP-wLFme3u0j0qCBJBE8Bzs6VTXC0s2VYJb28rHMwcZv6Z-SeTj7FbhB4imPvlZLnoCRCyF0uQWskz1kGlkggA9XlbCxkZUHDJrqrqs-lKhdhh85kPuw9f-vUhGn-7nHL-SvXehy_-4yx_2fp9Sfma-NBVtStLWzu_5YUPfD5-jIZ85kJoxILWG9rWf9NrdlHYsqKbU-6y99HTcvAcTd_Gk8HDNFqh0XXzDPU15lmfYtDCFokgozJFqHKpAfq5yACoCalXmGSZsUkiUZlMS6sbGXcZHu-ugq-qQEW6C25jwyFFSFsoaQslbaGkJyiN5-7ocUT0b19JY0Qc_wIOOF4e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</creator><creatorcontrib>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</creatorcontrib><description>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3404654</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer architecture ; Feature extraction ; Knowledge discovery ; Knowledge distillation ; Knowledge engineering ; Knowledge transfer ; mirror segmentation ; Mirrors ; Morphology ; morphology-guided network ; RGB-D ; Semantics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17382-17391</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</citedby><cites>FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</cites><orcidid>0000-0002-3055-2493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10549923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10549923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Wujie</creatorcontrib><creatorcontrib>Cai, Yuqi</creatorcontrib><creatorcontrib>Qiang, Fangfang</creatorcontrib><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</description><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Feature extraction</subject><subject>Knowledge discovery</subject><subject>Knowledge distillation</subject><subject>Knowledge engineering</subject><subject>Knowledge transfer</subject><subject>mirror segmentation</subject><subject>Mirrors</subject><subject>Morphology</subject><subject>morphology-guided network</subject><subject>RGB-D</subject><subject>Semantics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhjdGExF9ABMP-wLFme3u0j0qCBJBE8Bzs6VTXC0s2VYJb28rHMwcZv6Z-SeTj7FbhB4imPvlZLnoCRCyF0uQWskz1kGlkggA9XlbCxkZUHDJrqrqs-lKhdhh85kPuw9f-vUhGn-7nHL-SvXehy_-4yx_2fp9Sfma-NBVtStLWzu_5YUPfD5-jIZ85kJoxILWG9rWf9NrdlHYsqKbU-6y99HTcvAcTd_Gk8HDNFqh0XXzDPU15lmfYtDCFokgozJFqHKpAfq5yACoCalXmGSZsUkiUZlMS6sbGXcZHu-ugq-qQEW6C25jwyFFSFsoaQslbaGkJyiN5-7ocUT0b19JY0Qc_wIOOF4e</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Wujie</creator><creator>Cai, Yuqi</creator><creator>Qiang, Fangfang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3055-2493</orcidid></search><sort><creationdate>202411</creationdate><title>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</title><author>Zhou, Wujie ; Cai, Yuqi ; Qiang, Fangfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-90e761db7e3062af82e95b5e15d46007d2b00e0e046c18bb9a884159b64a6bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Feature extraction</topic><topic>Knowledge discovery</topic><topic>Knowledge distillation</topic><topic>Knowledge engineering</topic><topic>Knowledge transfer</topic><topic>mirror segmentation</topic><topic>Mirrors</topic><topic>Morphology</topic><topic>morphology-guided network</topic><topic>RGB-D</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wujie</creatorcontrib><creatorcontrib>Cai, Yuqi</creatorcontrib><creatorcontrib>Qiang, Fangfang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Wujie</au><au>Cai, Yuqi</au><au>Qiang, Fangfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17382</spage><epage>17391</epage><pages>17382-17391</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Mirror segmentation is an emerging computer vision task that is extensively applied in various fields. However, it presents significant challenges to existing segmentation methods when irregular shapes are involved. Most methods are designed for deployment on heavy-duty host machines that demand substantial computational resources and storage capacity, which limits their feasibility for deployment on mobile devices, where efficient and resource-friendly solutions are required. Therefore, we propose a morphology-guided network (MGNet) with knowledge distillation, called MGNet-S*, to achieve the efficiency required for deployment in mobile devices. In this network, we introduce an erosion dilation fusion module that leverages morphological knowledge to extract texture details from intrinsic features. This module incorporates different optimization strategies for multimodal features. Furthermore, it provides a knowledge-distillation framework specifically tailored to the proposed MGNet-S*. The MGNet-S* includes three effective distillation modules: a semi-soft label, misaligned features, and adaptive aggregation types. These modules facilitate the efficient transfer of knowledge from the MGNet teacher to MGNet student, allowing the lightweight network, MGNet-S*, to achieve remarkable performance. Numerous experiments proved that our proposed MGNet-S* outperformed state-of-the-art methods, achieving an 88.6% reduction in parameter count and 82.5% reduction in floating-point operations compared to those of the MGNet teacher network.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3404654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3055-2493</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17382-17391
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10549923
source IEEE Electronic Library (IEL)
subjects Computational modeling
Computer architecture
Feature extraction
Knowledge discovery
Knowledge distillation
Knowledge engineering
Knowledge transfer
mirror segmentation
Mirrors
Morphology
morphology-guided network
RGB-D
Semantics
title Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-Guided%20Network%20via%20Knowledge%20Distillation%20for%20RGB-D%20Mirror%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhou,%20Wujie&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17382&rft.epage=17391&rft.pages=17382-17391&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3404654&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3404654%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10549923&rfr_iscdi=true