Weight distributions of the cosets of the (32,6) Reed-Muller code
In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partiti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1972-01, Vol.18 (1), p.203-207, Article 203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | IEEE transactions on information theory |
container_volume | 18 |
creator | Berlekamp, E. Welch, L. |
description | In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements? |
doi_str_mv | 10.1109/TIT.1972.1054732 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1054732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1054732</ieee_id><sourcerecordid>28726236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcueRMGt-dxsjqX4UagIUvEYssmsjWy7Ncke_PduWSnS0_Ay7zMDD0KXBE8Iwep-OV9OiJJ0QrDgktEjNCJCyFwVgh-jEcakzBXn5Sk6i_Grj1wQOkLTD_Cfq5Q5H1PwVZd8u4lZW2dpBZltI6R9umH0rrjN3gBc_tI1DYS-4OAcndSmiXDxN8fo_fFhOXvOF69P89l0kVuORcqVqJRRsgKDgVLhnJSu5IZVhjhBC1o7V3BHeWErYaAmktVEYcI42JoBsWyMroe729B-dxCTXvtooWnMBtoualrK_gwr-iIeija0MQao9Tb4tQk_mmC9c6V7V3rnSv-56pHiALE-mZ2LFIxv9mDy6RC8GkAPAP_-DNtfFqN12Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28726236</pqid></control><display><type>article</type><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><source>IEEE Electronic Library (IEL)</source><creator>Berlekamp, E. ; Welch, L.</creator><creatorcontrib>Berlekamp, E. ; Welch, L.</creatorcontrib><description>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1972.1054732</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on information theory, 1972-01, Vol.18 (1), p.203-207, Article 203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</citedby><cites>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1054732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1054732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berlekamp, E.</creatorcontrib><creatorcontrib>Welch, L.</creatorcontrib><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</description><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcueRMGt-dxsjqX4UagIUvEYssmsjWy7Ncke_PduWSnS0_Ay7zMDD0KXBE8Iwep-OV9OiJJ0QrDgktEjNCJCyFwVgh-jEcakzBXn5Sk6i_Grj1wQOkLTD_Cfq5Q5H1PwVZd8u4lZW2dpBZltI6R9umH0rrjN3gBc_tI1DYS-4OAcndSmiXDxN8fo_fFhOXvOF69P89l0kVuORcqVqJRRsgKDgVLhnJSu5IZVhjhBC1o7V3BHeWErYaAmktVEYcI42JoBsWyMroe729B-dxCTXvtooWnMBtoualrK_gwr-iIeija0MQao9Tb4tQk_mmC9c6V7V3rnSv-56pHiALE-mZ2LFIxv9mDy6RC8GkAPAP_-DNtfFqN12Q</recordid><startdate>197201</startdate><enddate>197201</enddate><creator>Berlekamp, E.</creator><creator>Welch, L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197201</creationdate><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><author>Berlekamp, E. ; Welch, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berlekamp, E.</creatorcontrib><creatorcontrib>Welch, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berlekamp, E.</au><au>Welch, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight distributions of the cosets of the (32,6) Reed-Muller code</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1972-01</date><risdate>1972</risdate><volume>18</volume><issue>1</issue><spage>203</spage><epage>207</epage><pages>203-207</pages><artnum>203</artnum><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</abstract><pub>IEEE</pub><doi>10.1109/TIT.1972.1054732</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1972-01, Vol.18 (1), p.203-207, Article 203 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_1054732 |
source | IEEE Electronic Library (IEL) |
title | Weight distributions of the cosets of the (32,6) Reed-Muller code |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight%20distributions%20of%20the%20cosets%20of%20the%20(32,6)%20Reed-Muller%20code&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Berlekamp,%20E.&rft.date=1972-01&rft.volume=18&rft.issue=1&rft.spage=203&rft.epage=207&rft.pages=203-207&rft.artnum=203&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1972.1054732&rft_dat=%3Cproquest_RIE%3E28726236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28726236&rft_id=info:pmid/&rft_ieee_id=1054732&rfr_iscdi=true |