Weight distributions of the cosets of the (32,6) Reed-Muller code

In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1972-01, Vol.18 (1), p.203-207, Article 203
Hauptverfasser: Berlekamp, E., Welch, L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 1
container_start_page 203
container_title IEEE transactions on information theory
container_volume 18
creator Berlekamp, E.
Welch, L.
description In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?
doi_str_mv 10.1109/TIT.1972.1054732
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1054732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1054732</ieee_id><sourcerecordid>28726236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcueRMGt-dxsjqX4UagIUvEYssmsjWy7Ncke_PduWSnS0_Ay7zMDD0KXBE8Iwep-OV9OiJJ0QrDgktEjNCJCyFwVgh-jEcakzBXn5Sk6i_Grj1wQOkLTD_Cfq5Q5H1PwVZd8u4lZW2dpBZltI6R9umH0rrjN3gBc_tI1DYS-4OAcndSmiXDxN8fo_fFhOXvOF69P89l0kVuORcqVqJRRsgKDgVLhnJSu5IZVhjhBC1o7V3BHeWErYaAmktVEYcI42JoBsWyMroe729B-dxCTXvtooWnMBtoualrK_gwr-iIeija0MQao9Tb4tQk_mmC9c6V7V3rnSv-56pHiALE-mZ2LFIxv9mDy6RC8GkAPAP_-DNtfFqN12Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28726236</pqid></control><display><type>article</type><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><source>IEEE Electronic Library (IEL)</source><creator>Berlekamp, E. ; Welch, L.</creator><creatorcontrib>Berlekamp, E. ; Welch, L.</creatorcontrib><description>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1972.1054732</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on information theory, 1972-01, Vol.18 (1), p.203-207, Article 203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</citedby><cites>FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1054732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1054732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berlekamp, E.</creatorcontrib><creatorcontrib>Welch, L.</creatorcontrib><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</description><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcueRMGt-dxsjqX4UagIUvEYssmsjWy7Ncke_PduWSnS0_Ay7zMDD0KXBE8Iwep-OV9OiJJ0QrDgktEjNCJCyFwVgh-jEcakzBXn5Sk6i_Grj1wQOkLTD_Cfq5Q5H1PwVZd8u4lZW2dpBZltI6R9umH0rrjN3gBc_tI1DYS-4OAcndSmiXDxN8fo_fFhOXvOF69P89l0kVuORcqVqJRRsgKDgVLhnJSu5IZVhjhBC1o7V3BHeWErYaAmktVEYcI42JoBsWyMroe729B-dxCTXvtooWnMBtoualrK_gwr-iIeija0MQao9Tb4tQk_mmC9c6V7V3rnSv-56pHiALE-mZ2LFIxv9mDy6RC8GkAPAP_-DNtfFqN12Q</recordid><startdate>197201</startdate><enddate>197201</enddate><creator>Berlekamp, E.</creator><creator>Welch, L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197201</creationdate><title>Weight distributions of the cosets of the (32,6) Reed-Muller code</title><author>Berlekamp, E. ; Welch, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-95b9a97bea0e225dd77d84a3ba1d5262fdd64d246cb5aef173f190134ecf3e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berlekamp, E.</creatorcontrib><creatorcontrib>Welch, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berlekamp, E.</au><au>Welch, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight distributions of the cosets of the (32,6) Reed-Muller code</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1972-01</date><risdate>1972</risdate><volume>18</volume><issue>1</issue><spage>203</spage><epage>207</epage><pages>203-207</pages><artnum>203</artnum><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper we present the weight distribution of all 2^26 cosets of the (32,6) first-order Reed-Muller code. The code is invariant under the complete affine group, of order 32 \times 31 \times 30 \times 28 \times 24 \times 16. In the Appendix we show (by hand computations) that this group partitions the 2^26 cosets into only 48 equivalence classes, and we obtain the number of cosets in each class. A simple computer program then enumerated the weights of the 32 vectors ih each of the 48 cosets. These coset enumerations also answer this equivalent problem: how well are the 2^32 Boolean functions of five variables approximated by the 2^5 linear functions and their complements?</abstract><pub>IEEE</pub><doi>10.1109/TIT.1972.1054732</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1972-01, Vol.18 (1), p.203-207, Article 203
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1054732
source IEEE Electronic Library (IEL)
title Weight distributions of the cosets of the (32,6) Reed-Muller code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight%20distributions%20of%20the%20cosets%20of%20the%20(32,6)%20Reed-Muller%20code&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Berlekamp,%20E.&rft.date=1972-01&rft.volume=18&rft.issue=1&rft.spage=203&rft.epage=207&rft.pages=203-207&rft.artnum=203&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1972.1054732&rft_dat=%3Cproquest_RIE%3E28726236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28726236&rft_id=info:pmid/&rft_ieee_id=1054732&rfr_iscdi=true