Asymptotic quantizing error for unbounded random variables (Corresp.)

A sufficient condition is given for mean r th-power error in quantizing an unbounded random variable to vary inversely with the r th power of the number of quantizing levels. An example is given of a distribution for which this behavior is unattainable.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1970-01, Vol.16 (1), p.81-83
1. Verfasser: Pierce, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 81
container_title IEEE transactions on information theory
container_volume 16
creator Pierce, J.
description A sufficient condition is given for mean r th-power error in quantizing an unbounded random variable to vary inversely with the r th power of the number of quantizing levels. An example is given of a distribution for which this behavior is unattainable.
doi_str_mv 10.1109/TIT.1970.1054400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1054400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1054400</ieee_id><sourcerecordid>28645122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3b466e221875fedbe7d6049c8ee84206f175d3e4eac1ecd3c04a8f527669a7873</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouK7eBS89iR5akzRfPS7LqgsLXtZzSJOpVNqmm7TC-tfbpXvwMAyPeW_g_RC6JzgjBBcv--0-I4WcFOaMYXyBFoRzmRaCs0u0wJiotGBMXaObGL8nyTihC7RZxWPbD36obXIYTTfUv3X3lUAIPiTVNGNX-rFz4JJgOufb5MeE2pQNxORp7UOA2GfPt-iqMk2Eu_Neos_XzX79nu4-3rbr1S61eV4MaV4yIYBSoiSvwJUgncCssApAMYpFRSR3OTAwloB1ucXMqIpTKURhpJL5Ej3Of_vgDyPEQbd1tNA0pgM_Rk2VONWikxHPRht8jAEq3Ye6NeGoCdYnXnripU-89JnXFHmYIzUA_LPP1z8LvmbC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28645122</pqid></control><display><type>article</type><title>Asymptotic quantizing error for unbounded random variables (Corresp.)</title><source>IEEE Electronic Library (IEL)</source><creator>Pierce, J.</creator><creatorcontrib>Pierce, J.</creatorcontrib><description>A sufficient condition is given for mean r th-power error in quantizing an unbounded random variable to vary inversely with the r th power of the number of quantizing levels. An example is given of a distribution for which this behavior is unattainable.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1970.1054400</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on information theory, 1970-01, Vol.16 (1), p.81-83</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3b466e221875fedbe7d6049c8ee84206f175d3e4eac1ecd3c04a8f527669a7873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1054400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1054400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pierce, J.</creatorcontrib><title>Asymptotic quantizing error for unbounded random variables (Corresp.)</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A sufficient condition is given for mean r th-power error in quantizing an unbounded random variable to vary inversely with the r th power of the number of quantizing levels. An example is given of a distribution for which this behavior is unattainable.</description><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LxDAQxYMouK7eBS89iR5akzRfPS7LqgsLXtZzSJOpVNqmm7TC-tfbpXvwMAyPeW_g_RC6JzgjBBcv--0-I4WcFOaMYXyBFoRzmRaCs0u0wJiotGBMXaObGL8nyTihC7RZxWPbD36obXIYTTfUv3X3lUAIPiTVNGNX-rFz4JJgOufb5MeE2pQNxORp7UOA2GfPt-iqMk2Eu_Neos_XzX79nu4-3rbr1S61eV4MaV4yIYBSoiSvwJUgncCssApAMYpFRSR3OTAwloB1ucXMqIpTKURhpJL5Ej3Of_vgDyPEQbd1tNA0pgM_Rk2VONWikxHPRht8jAEq3Ye6NeGoCdYnXnripU-89JnXFHmYIzUA_LPP1z8LvmbC</recordid><startdate>197001</startdate><enddate>197001</enddate><creator>Pierce, J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197001</creationdate><title>Asymptotic quantizing error for unbounded random variables (Corresp.)</title><author>Pierce, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3b466e221875fedbe7d6049c8ee84206f175d3e4eac1ecd3c04a8f527669a7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pierce, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic quantizing error for unbounded random variables (Corresp.)</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1970-01</date><risdate>1970</risdate><volume>16</volume><issue>1</issue><spage>81</spage><epage>83</epage><pages>81-83</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A sufficient condition is given for mean r th-power error in quantizing an unbounded random variable to vary inversely with the r th power of the number of quantizing levels. An example is given of a distribution for which this behavior is unattainable.</abstract><pub>IEEE</pub><doi>10.1109/TIT.1970.1054400</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1970-01, Vol.16 (1), p.81-83
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1054400
source IEEE Electronic Library (IEL)
title Asymptotic quantizing error for unbounded random variables (Corresp.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20quantizing%20error%20for%20unbounded%20random%20variables%20(Corresp.)&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Pierce,%20J.&rft.date=1970-01&rft.volume=16&rft.issue=1&rft.spage=81&rft.epage=83&rft.pages=81-83&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1970.1054400&rft_dat=%3Cproquest_RIE%3E28645122%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28645122&rft_id=info:pmid/&rft_ieee_id=1054400&rfr_iscdi=true