Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection

In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-07, Vol.24 (14), p.23197-23211
Hauptverfasser: Fu, Zhenzhou, Pan, Xiao, Zhang, Guangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23211
container_issue 14
container_start_page 23197
container_title IEEE sensors journal
container_volume 24
creator Fu, Zhenzhou
Pan, Xiao
Zhang, Guangjun
description In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.
doi_str_mv 10.1109/JSEN.2024.3404950
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10543259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10543259</ieee_id><sourcerecordid>10_1109_JSEN_2024_3404950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsFYfQHAxL5B6zlxyWZberJS6aEV34SQ5KSPpRCZx0bfX0C5c_T_8l8UnxCPCBBGy59fdYjtRoMxEGzCZhSsxQmvTCBOTXg9eQ2R08nkr7rruCwCzxCYj8bFxninIaQh0kusjHVhOG3fwR_a9fPcVB7ltfXNu7UpqWM5d17ehd62XdRvkPpDzckk_TS_n3HM5JPfipqam44eLjsV-udjPXqLN22o9m26iEk3aRwUQaYVKQV0pWyuuOIa4MKaKS4I4Jkxqo4DRxkwpqBQ1aLZK2RKzotBjgefbMrRdF7jOv4M7UjjlCPkAJh_A5AOY_ALmb_N03jhm_te3Riub6V-gPl9H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</creator><creatorcontrib>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</creatorcontrib><description>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3404950</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Carriage fault detection ; Fault detection ; Feature extraction ; feature point matching ; linear array image alignment ; Nonlinear distortion ; nonlinear scale distortion ; Optimization ; outlier elimination ; Sensors ; Task analysis ; weighted radial basis function (WRBF)</subject><ispartof>IEEE sensors journal, 2024-07, Vol.24 (14), p.23197-23211</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</cites><orcidid>0000-0001-8786-9347 ; 0000-0002-3859-6132 ; 0000-0003-1365-716X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10543259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10543259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Zhenzhou</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</description><subject>Cameras</subject><subject>Carriage fault detection</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>feature point matching</subject><subject>linear array image alignment</subject><subject>Nonlinear distortion</subject><subject>nonlinear scale distortion</subject><subject>Optimization</subject><subject>outlier elimination</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>weighted radial basis function (WRBF)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhgdRsFYfQHAxL5B6zlxyWZberJS6aEV34SQ5KSPpRCZx0bfX0C5c_T_8l8UnxCPCBBGy59fdYjtRoMxEGzCZhSsxQmvTCBOTXg9eQ2R08nkr7rruCwCzxCYj8bFxninIaQh0kusjHVhOG3fwR_a9fPcVB7ltfXNu7UpqWM5d17ehd62XdRvkPpDzckk_TS_n3HM5JPfipqam44eLjsV-udjPXqLN22o9m26iEk3aRwUQaYVKQV0pWyuuOIa4MKaKS4I4Jkxqo4DRxkwpqBQ1aLZK2RKzotBjgefbMrRdF7jOv4M7UjjlCPkAJh_A5AOY_ALmb_N03jhm_te3Riub6V-gPl9H</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Fu, Zhenzhou</creator><creator>Pan, Xiao</creator><creator>Zhang, Guangjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8786-9347</orcidid><orcidid>https://orcid.org/0000-0002-3859-6132</orcidid><orcidid>https://orcid.org/0000-0003-1365-716X</orcidid></search><sort><creationdate>20240715</creationdate><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><author>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Carriage fault detection</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>feature point matching</topic><topic>linear array image alignment</topic><topic>Nonlinear distortion</topic><topic>nonlinear scale distortion</topic><topic>Optimization</topic><topic>outlier elimination</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>weighted radial basis function (WRBF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhenzhou</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Zhenzhou</au><au>Pan, Xiao</au><au>Zhang, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-07-15</date><risdate>2024</risdate><volume>24</volume><issue>14</issue><spage>23197</spage><epage>23211</epage><pages>23197-23211</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3404950</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8786-9347</orcidid><orcidid>https://orcid.org/0000-0002-3859-6132</orcidid><orcidid>https://orcid.org/0000-0003-1365-716X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-07, Vol.24 (14), p.23197-23211
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10543259
source IEEE Electronic Library (IEL)
subjects Cameras
Carriage fault detection
Fault detection
Feature extraction
feature point matching
linear array image alignment
Nonlinear distortion
nonlinear scale distortion
Optimization
outlier elimination
Sensors
Task analysis
weighted radial basis function (WRBF)
title Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Array%20Image%20Alignment%20Under%20Nonlinear%20Scale%20Distortion%20for%20Train%20Fault%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Fu,%20Zhenzhou&rft.date=2024-07-15&rft.volume=24&rft.issue=14&rft.spage=23197&rft.epage=23211&rft.pages=23197-23211&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3404950&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3404950%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10543259&rfr_iscdi=true