Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection
In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-07, Vol.24 (14), p.23197-23211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23211 |
---|---|
container_issue | 14 |
container_start_page | 23197 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Fu, Zhenzhou Pan, Xiao Zhang, Guangjun |
description | In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks. |
doi_str_mv | 10.1109/JSEN.2024.3404950 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10543259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10543259</ieee_id><sourcerecordid>10_1109_JSEN_2024_3404950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsFYfQHAxL5B6zlxyWZberJS6aEV34SQ5KSPpRCZx0bfX0C5c_T_8l8UnxCPCBBGy59fdYjtRoMxEGzCZhSsxQmvTCBOTXg9eQ2R08nkr7rruCwCzxCYj8bFxninIaQh0kusjHVhOG3fwR_a9fPcVB7ltfXNu7UpqWM5d17ehd62XdRvkPpDzckk_TS_n3HM5JPfipqam44eLjsV-udjPXqLN22o9m26iEk3aRwUQaYVKQV0pWyuuOIa4MKaKS4I4Jkxqo4DRxkwpqBQ1aLZK2RKzotBjgefbMrRdF7jOv4M7UjjlCPkAJh_A5AOY_ALmb_N03jhm_te3Riub6V-gPl9H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</creator><creatorcontrib>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</creatorcontrib><description>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3404950</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Carriage fault detection ; Fault detection ; Feature extraction ; feature point matching ; linear array image alignment ; Nonlinear distortion ; nonlinear scale distortion ; Optimization ; outlier elimination ; Sensors ; Task analysis ; weighted radial basis function (WRBF)</subject><ispartof>IEEE sensors journal, 2024-07, Vol.24 (14), p.23197-23211</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</cites><orcidid>0000-0001-8786-9347 ; 0000-0002-3859-6132 ; 0000-0003-1365-716X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10543259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10543259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Zhenzhou</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</description><subject>Cameras</subject><subject>Carriage fault detection</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>feature point matching</subject><subject>linear array image alignment</subject><subject>Nonlinear distortion</subject><subject>nonlinear scale distortion</subject><subject>Optimization</subject><subject>outlier elimination</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>weighted radial basis function (WRBF)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhgdRsFYfQHAxL5B6zlxyWZberJS6aEV34SQ5KSPpRCZx0bfX0C5c_T_8l8UnxCPCBBGy59fdYjtRoMxEGzCZhSsxQmvTCBOTXg9eQ2R08nkr7rruCwCzxCYj8bFxninIaQh0kusjHVhOG3fwR_a9fPcVB7ltfXNu7UpqWM5d17ehd62XdRvkPpDzckk_TS_n3HM5JPfipqam44eLjsV-udjPXqLN22o9m26iEk3aRwUQaYVKQV0pWyuuOIa4MKaKS4I4Jkxqo4DRxkwpqBQ1aLZK2RKzotBjgefbMrRdF7jOv4M7UjjlCPkAJh_A5AOY_ALmb_N03jhm_te3Riub6V-gPl9H</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Fu, Zhenzhou</creator><creator>Pan, Xiao</creator><creator>Zhang, Guangjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8786-9347</orcidid><orcidid>https://orcid.org/0000-0002-3859-6132</orcidid><orcidid>https://orcid.org/0000-0003-1365-716X</orcidid></search><sort><creationdate>20240715</creationdate><title>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</title><author>Fu, Zhenzhou ; Pan, Xiao ; Zhang, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-b0aa321220fd25f2ede606b44d6ca066a17f420e156ea80281303e5225c19bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Carriage fault detection</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>feature point matching</topic><topic>linear array image alignment</topic><topic>Nonlinear distortion</topic><topic>nonlinear scale distortion</topic><topic>Optimization</topic><topic>outlier elimination</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>weighted radial basis function (WRBF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhenzhou</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Zhenzhou</au><au>Pan, Xiao</au><au>Zhang, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-07-15</date><risdate>2024</risdate><volume>24</volume><issue>14</issue><spage>23197</spage><epage>23211</epage><pages>23197-23211</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In pushbroom-style train imaging systems, the efficiency and accuracy of image alignment are crucial for improving train fault detection accuracy. However, nonlinear scale distortion in linear array images poses significant challenges to alignment precision. To address this, our study introduces an innovative image alignment algorithm for linear arrays, adept at handling nonlinear scale distortions. This algorithm is particularly effective in aligning heterogeneous images, even with substantial differences in texture features. The developed dynamic step-length sliding window strategy, feature point matching using geometric constraints, polynomial-constrained outlier elimination, and interval feature matching fusion significantly enhance both the accuracy and density of feature point matching. Furthermore, the application of the weighted radial basis function (WRBF) facilitates precise coordinate transformation in the image remapping process. Comprehensive experimental evaluations demonstrate the algorithm's superior alignment precision and efficiency in both homogenous and heterogeneous image alignment scenarios, markedly boosting train fault detection accuracy. The algorithm's versatility extends its utility beyond train fault detection to broader applications in pushbroom-style imaging system alignment tasks.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3404950</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8786-9347</orcidid><orcidid>https://orcid.org/0000-0002-3859-6132</orcidid><orcidid>https://orcid.org/0000-0003-1365-716X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-07, Vol.24 (14), p.23197-23211 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10543259 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Carriage fault detection Fault detection Feature extraction feature point matching linear array image alignment Nonlinear distortion nonlinear scale distortion Optimization outlier elimination Sensors Task analysis weighted radial basis function (WRBF) |
title | Linear Array Image Alignment Under Nonlinear Scale Distortion for Train Fault Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Array%20Image%20Alignment%20Under%20Nonlinear%20Scale%20Distortion%20for%20Train%20Fault%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Fu,%20Zhenzhou&rft.date=2024-07-15&rft.volume=24&rft.issue=14&rft.spage=23197&rft.epage=23211&rft.pages=23197-23211&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3404950&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3404950%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10543259&rfr_iscdi=true |