LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS
This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2024-11, Vol.72 (11), p.6929-6942 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6942 |
---|---|
container_issue | 11 |
container_start_page | 6929 |
container_title | IEEE transactions on communications |
container_volume | 72 |
creator | Lima, Brena Kelly Sousa Pedro Matos-Carvalho, Joao Dinis, Rui Benevides da Costa, Daniel Beko, Marko Oliveira, Rodolfo |
description | This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined. |
doi_str_mv | 10.1109/TCOMM.2024.3407192 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10542511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542511</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3407192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-9c734813b56d40041a5a7e320aaffc75e2cc89821a805bc29cd82dd2b90d07b23</originalsourceid><addsrcrecordid>eNpNkNFKwzAYhYMoWKcvIF7kBTL_JM2SXNahc7C6sdbrkiYp69RVkoL07e3cLrw6cOA7HD6E7ilMKQX9WM7XeT5lwNIpT0FSzS5QQoVQBJSQlygB0EBmUqprdBPjHgBS4DxBxaooc_Jkone4DGbvbd-FAZuDw5vd2JJi1zY93gTvWtu33QE3XcDbIs_wm-9_uvARcRZjG_txoB5wttwWt-iqMZ_R351zgt5fnsv5K1mtF8t5tiKWat4TbSVPFeW1mLl0_EONMNJzBsY0jZXCM2uVVowaBaK2TFunmHOs1uBA1oxPEDvt2tDFGHxTfYf2y4SholAdtVR_WqqjluqsZYQeTlDrvf8HiJQJSvkv8bFdwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><source>IEEE Electronic Library (IEL)</source><creator>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</creator><creatorcontrib>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</creatorcontrib><description>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3407192</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Autonomous aerial vehicles ; Heuristic algorithms ; Intelligent reflecting surface (IRS) ; Long short term memory ; long short-term memory (LSTM) ; precoder design ; rate-splitting multiple access (RSMA) ; Resource management ; Trajectory ; trajectory optimization ; unmanned aerial vehicle (UAV) ; Vectors</subject><ispartof>IEEE transactions on communications, 2024-11, Vol.72 (11), p.6929-6942</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2804-1125 ; 0000-0002-8520-7267 ; 0000-0001-9409-7736 ; 0000-0002-5439-7475 ; 0000-0001-9181-8438 ; 0000-0001-7315-8739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Lima, Brena Kelly Sousa</creatorcontrib><creatorcontrib>Pedro Matos-Carvalho, Joao</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><creatorcontrib>Benevides da Costa, Daniel</creatorcontrib><creatorcontrib>Beko, Marko</creatorcontrib><creatorcontrib>Oliveira, Rodolfo</creatorcontrib><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</description><subject>Array signal processing</subject><subject>Autonomous aerial vehicles</subject><subject>Heuristic algorithms</subject><subject>Intelligent reflecting surface (IRS)</subject><subject>Long short term memory</subject><subject>long short-term memory (LSTM)</subject><subject>precoder design</subject><subject>rate-splitting multiple access (RSMA)</subject><subject>Resource management</subject><subject>Trajectory</subject><subject>trajectory optimization</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Vectors</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAYhYMoWKcvIF7kBTL_JM2SXNahc7C6sdbrkiYp69RVkoL07e3cLrw6cOA7HD6E7ilMKQX9WM7XeT5lwNIpT0FSzS5QQoVQBJSQlygB0EBmUqprdBPjHgBS4DxBxaooc_Jkone4DGbvbd-FAZuDw5vd2JJi1zY93gTvWtu33QE3XcDbIs_wm-9_uvARcRZjG_txoB5wttwWt-iqMZ_R351zgt5fnsv5K1mtF8t5tiKWat4TbSVPFeW1mLl0_EONMNJzBsY0jZXCM2uVVowaBaK2TFunmHOs1uBA1oxPEDvt2tDFGHxTfYf2y4SholAdtVR_WqqjluqsZYQeTlDrvf8HiJQJSvkv8bFdwQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lima, Brena Kelly Sousa</creator><creator>Pedro Matos-Carvalho, Joao</creator><creator>Dinis, Rui</creator><creator>Benevides da Costa, Daniel</creator><creator>Beko, Marko</creator><creator>Oliveira, Rodolfo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2804-1125</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0001-9409-7736</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0001-9181-8438</orcidid><orcidid>https://orcid.org/0000-0001-7315-8739</orcidid></search><sort><creationdate>202411</creationdate><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><author>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-9c734813b56d40041a5a7e320aaffc75e2cc89821a805bc29cd82dd2b90d07b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Array signal processing</topic><topic>Autonomous aerial vehicles</topic><topic>Heuristic algorithms</topic><topic>Intelligent reflecting surface (IRS)</topic><topic>Long short term memory</topic><topic>long short-term memory (LSTM)</topic><topic>precoder design</topic><topic>rate-splitting multiple access (RSMA)</topic><topic>Resource management</topic><topic>Trajectory</topic><topic>trajectory optimization</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Brena Kelly Sousa</creatorcontrib><creatorcontrib>Pedro Matos-Carvalho, Joao</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><creatorcontrib>Benevides da Costa, Daniel</creatorcontrib><creatorcontrib>Beko, Marko</creatorcontrib><creatorcontrib>Oliveira, Rodolfo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Brena Kelly Sousa</au><au>Pedro Matos-Carvalho, Joao</au><au>Dinis, Rui</au><au>Benevides da Costa, Daniel</au><au>Beko, Marko</au><au>Oliveira, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-11</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><spage>6929</spage><epage>6942</epage><pages>6929-6942</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3407192</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2804-1125</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0001-9409-7736</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0001-9181-8438</orcidid><orcidid>https://orcid.org/0000-0001-7315-8739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2024-11, Vol.72 (11), p.6929-6942 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_10542511 |
source | IEEE Electronic Library (IEL) |
subjects | Array signal processing Autonomous aerial vehicles Heuristic algorithms Intelligent reflecting surface (IRS) Long short term memory long short-term memory (LSTM) precoder design rate-splitting multiple access (RSMA) Resource management Trajectory trajectory optimization unmanned aerial vehicle (UAV) Vectors |
title | LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM-Based%20Trajectory%20and%20Phase-Shift%20Prediction%20for%20RSMA%20Networks%20Assisted%20by%20AIRS&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lima,%20Brena%20Kelly%20Sousa&rft.date=2024-11&rft.volume=72&rft.issue=11&rft.spage=6929&rft.epage=6942&rft.pages=6929-6942&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3407192&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCOMM_2024_3407192%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10542511&rfr_iscdi=true |