LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS

This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-11, Vol.72 (11), p.6929-6942
Hauptverfasser: Lima, Brena Kelly Sousa, Pedro Matos-Carvalho, Joao, Dinis, Rui, Benevides da Costa, Daniel, Beko, Marko, Oliveira, Rodolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6942
container_issue 11
container_start_page 6929
container_title IEEE transactions on communications
container_volume 72
creator Lima, Brena Kelly Sousa
Pedro Matos-Carvalho, Joao
Dinis, Rui
Benevides da Costa, Daniel
Beko, Marko
Oliveira, Rodolfo
description This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.
doi_str_mv 10.1109/TCOMM.2024.3407192
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10542511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542511</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3407192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-9c734813b56d40041a5a7e320aaffc75e2cc89821a805bc29cd82dd2b90d07b23</originalsourceid><addsrcrecordid>eNpNkNFKwzAYhYMoWKcvIF7kBTL_JM2SXNahc7C6sdbrkiYp69RVkoL07e3cLrw6cOA7HD6E7ilMKQX9WM7XeT5lwNIpT0FSzS5QQoVQBJSQlygB0EBmUqprdBPjHgBS4DxBxaooc_Jkone4DGbvbd-FAZuDw5vd2JJi1zY93gTvWtu33QE3XcDbIs_wm-9_uvARcRZjG_txoB5wttwWt-iqMZ_R351zgt5fnsv5K1mtF8t5tiKWat4TbSVPFeW1mLl0_EONMNJzBsY0jZXCM2uVVowaBaK2TFunmHOs1uBA1oxPEDvt2tDFGHxTfYf2y4SholAdtVR_WqqjluqsZYQeTlDrvf8HiJQJSvkv8bFdwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><source>IEEE Electronic Library (IEL)</source><creator>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</creator><creatorcontrib>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</creatorcontrib><description>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3407192</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Autonomous aerial vehicles ; Heuristic algorithms ; Intelligent reflecting surface (IRS) ; Long short term memory ; long short-term memory (LSTM) ; precoder design ; rate-splitting multiple access (RSMA) ; Resource management ; Trajectory ; trajectory optimization ; unmanned aerial vehicle (UAV) ; Vectors</subject><ispartof>IEEE transactions on communications, 2024-11, Vol.72 (11), p.6929-6942</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2804-1125 ; 0000-0002-8520-7267 ; 0000-0001-9409-7736 ; 0000-0002-5439-7475 ; 0000-0001-9181-8438 ; 0000-0001-7315-8739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Lima, Brena Kelly Sousa</creatorcontrib><creatorcontrib>Pedro Matos-Carvalho, Joao</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><creatorcontrib>Benevides da Costa, Daniel</creatorcontrib><creatorcontrib>Beko, Marko</creatorcontrib><creatorcontrib>Oliveira, Rodolfo</creatorcontrib><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</description><subject>Array signal processing</subject><subject>Autonomous aerial vehicles</subject><subject>Heuristic algorithms</subject><subject>Intelligent reflecting surface (IRS)</subject><subject>Long short term memory</subject><subject>long short-term memory (LSTM)</subject><subject>precoder design</subject><subject>rate-splitting multiple access (RSMA)</subject><subject>Resource management</subject><subject>Trajectory</subject><subject>trajectory optimization</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Vectors</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAYhYMoWKcvIF7kBTL_JM2SXNahc7C6sdbrkiYp69RVkoL07e3cLrw6cOA7HD6E7ilMKQX9WM7XeT5lwNIpT0FSzS5QQoVQBJSQlygB0EBmUqprdBPjHgBS4DxBxaooc_Jkone4DGbvbd-FAZuDw5vd2JJi1zY93gTvWtu33QE3XcDbIs_wm-9_uvARcRZjG_txoB5wttwWt-iqMZ_R351zgt5fnsv5K1mtF8t5tiKWat4TbSVPFeW1mLl0_EONMNJzBsY0jZXCM2uVVowaBaK2TFunmHOs1uBA1oxPEDvt2tDFGHxTfYf2y4SholAdtVR_WqqjluqsZYQeTlDrvf8HiJQJSvkv8bFdwQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lima, Brena Kelly Sousa</creator><creator>Pedro Matos-Carvalho, Joao</creator><creator>Dinis, Rui</creator><creator>Benevides da Costa, Daniel</creator><creator>Beko, Marko</creator><creator>Oliveira, Rodolfo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2804-1125</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0001-9409-7736</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0001-9181-8438</orcidid><orcidid>https://orcid.org/0000-0001-7315-8739</orcidid></search><sort><creationdate>202411</creationdate><title>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</title><author>Lima, Brena Kelly Sousa ; Pedro Matos-Carvalho, Joao ; Dinis, Rui ; Benevides da Costa, Daniel ; Beko, Marko ; Oliveira, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-9c734813b56d40041a5a7e320aaffc75e2cc89821a805bc29cd82dd2b90d07b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Array signal processing</topic><topic>Autonomous aerial vehicles</topic><topic>Heuristic algorithms</topic><topic>Intelligent reflecting surface (IRS)</topic><topic>Long short term memory</topic><topic>long short-term memory (LSTM)</topic><topic>precoder design</topic><topic>rate-splitting multiple access (RSMA)</topic><topic>Resource management</topic><topic>Trajectory</topic><topic>trajectory optimization</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Brena Kelly Sousa</creatorcontrib><creatorcontrib>Pedro Matos-Carvalho, Joao</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><creatorcontrib>Benevides da Costa, Daniel</creatorcontrib><creatorcontrib>Beko, Marko</creatorcontrib><creatorcontrib>Oliveira, Rodolfo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Brena Kelly Sousa</au><au>Pedro Matos-Carvalho, Joao</au><au>Dinis, Rui</au><au>Benevides da Costa, Daniel</au><au>Beko, Marko</au><au>Oliveira, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-11</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><spage>6929</spage><epage>6942</epage><pages>6929-6942</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper investigates rate-splitting multiple access (RSMA) networks with multiusers assisted by aerial intelligent reflecting surfaces (AIRS). To improve the sum-rate of the system, the UAV's trajectory and phase-shift vectors are optimized, in which the mobility scenarios with static and dynamic users are explored. In particular, long short-term memory (LSTM)-based frameworks for predicting the UAV's trajectory and the phase-shift of the reflecting elements of AIRS are proposed. For more insight, a third model is created by combining information from the static and dynamic scenarios. Furthermore, to improve the transmit beamforming at the BS, an algorithm based on alternating optimization (AO) under the assumptions of imperfect successive interference cancelation (SIC) is presented. Training progress and testing results are provided to demonstrate the efficiency of the proposed models. In addition, numerical simulations are presented to verify the performance gains in terms of sum-rate. The simulation results show that the UAV performs better in trajectory prediction and phase-shift when different investigated scenarios are not combined.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3407192</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2804-1125</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0001-9409-7736</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0001-9181-8438</orcidid><orcidid>https://orcid.org/0000-0001-7315-8739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-11, Vol.72 (11), p.6929-6942
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_10542511
source IEEE Electronic Library (IEL)
subjects Array signal processing
Autonomous aerial vehicles
Heuristic algorithms
Intelligent reflecting surface (IRS)
Long short term memory
long short-term memory (LSTM)
precoder design
rate-splitting multiple access (RSMA)
Resource management
Trajectory
trajectory optimization
unmanned aerial vehicle (UAV)
Vectors
title LSTM-Based Trajectory and Phase-Shift Prediction for RSMA Networks Assisted by AIRS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM-Based%20Trajectory%20and%20Phase-Shift%20Prediction%20for%20RSMA%20Networks%20Assisted%20by%20AIRS&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lima,%20Brena%20Kelly%20Sousa&rft.date=2024-11&rft.volume=72&rft.issue=11&rft.spage=6929&rft.epage=6942&rft.pages=6929-6942&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3407192&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCOMM_2024_3407192%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10542511&rfr_iscdi=true