YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection

To improve the jamming cognitive level of radar in the complex and changeable electromagnetic environment, this article proposes a YOLO-CJ (YOLO network for compound jamming detection) lightweight network for compound jamming signal detection. First, the compound jamming image dataset is constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-10, Vol.60 (5), p.6807-6821
Hauptverfasser: Zhu, Xuan, Wu, Hao, He, Fangmin, Yang, Zhong, Meng, Jin, Ruan, Jiangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6821
container_issue 5
container_start_page 6807
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Zhu, Xuan
Wu, Hao
He, Fangmin
Yang, Zhong
Meng, Jin
Ruan, Jiangjun
description To improve the jamming cognitive level of radar in the complex and changeable electromagnetic environment, this article proposes a YOLO-CJ (YOLO network for compound jamming detection) lightweight network for compound jamming signal detection. First, the compound jamming image dataset is constructed by signal model and short-time Fourier transform. Second, based on the YOLOv7-tiny lightweight baseline model, the designed SimSPPFCSPC module, Triplet attention mechanism, and the C2f module are illustrated to improve the YOLOv7-tiny and establish the YOLO-CJ lightweight network, which aims to enhance the saliency and difference of the extracted features in the case of low SNR/JNR while effectively control the quantity of computation and parameters. Subsequently, combined with the compound jamming image dataset, the ablation experiment, algorithm comparison experiment, and robustness verification are carried out. The results demonstrate that the detection precision (mAP) and the inference time of a single image of the YOLO-CJ model can reach 98.69% and 12.73 ms, and the tradeoff value of detection precision and speed can reach the highest 79.93%. Moreover, the mAP of the YOLO-CJ for compound jamming detection under SNR / JNR ≥ 0 dB can reach more than 96%, which has good robustness and generalization ability under low SNR and JNR.
doi_str_mv 10.1109/TAES.2024.3406491
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10540186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540186</ieee_id><sourcerecordid>10_1109_TAES_2024_3406491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-4dca8e85b1d83e31e1d4bc601f7891a6c75e701adf973d61129f35ae48bc54d63</originalsourceid><addsrcrecordid>eNpN0M1Kw0AQB_BFFIzVBxA87Auk7mQ_suutpK1agj20HjyF7e4kRpukJJHi25vQHrzMMDD_GfgRcg9sCsDM43a22EwjFokpF0wJAxckACnj0CjGL0nAGOjQRBKuyU3XfQ2j0IIHZP6xTtdhsnqiM5qWxWd_xLHSN-yPTftN86alSVMdmp_a05WtqrIu6KYsarunc-zR9WVT35Kr3O47vDv3CXlfLrbJS5iun1-TWRq64VsfCu-sRi134DVHDghe7JxikMfagFUulhgzsD43MfcKIDI5lxaF3jkpvOITAqe7rm26rsU8O7RlZdvfDFg2MmQjQzYyZGeGIfNwypSI-G9fikFE8T82l1hR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Xuan ; Wu, Hao ; He, Fangmin ; Yang, Zhong ; Meng, Jin ; Ruan, Jiangjun</creator><creatorcontrib>Zhu, Xuan ; Wu, Hao ; He, Fangmin ; Yang, Zhong ; Meng, Jin ; Ruan, Jiangjun</creatorcontrib><description>To improve the jamming cognitive level of radar in the complex and changeable electromagnetic environment, this article proposes a YOLO-CJ (YOLO network for compound jamming detection) lightweight network for compound jamming signal detection. First, the compound jamming image dataset is constructed by signal model and short-time Fourier transform. Second, based on the YOLOv7-tiny lightweight baseline model, the designed SimSPPFCSPC module, Triplet attention mechanism, and the C2f module are illustrated to improve the YOLOv7-tiny and establish the YOLO-CJ lightweight network, which aims to enhance the saliency and difference of the extracted features in the case of low SNR/JNR while effectively control the quantity of computation and parameters. Subsequently, combined with the compound jamming image dataset, the ablation experiment, algorithm comparison experiment, and robustness verification are carried out. The results demonstrate that the detection precision (mAP) and the inference time of a single image of the YOLO-CJ model can reach 98.69% and 12.73 ms, and the tradeoff value of detection precision and speed can reach the highest 79.93%. Moreover, the mAP of the YOLO-CJ for compound jamming detection under SNR / JNR ≥ 0 dB can reach more than 96%, which has good robustness and generalization ability under low SNR and JNR.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3406491</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compounds ; Feature extraction ; Jamming ; Radar ; Radar detection ; Radar measurements ; Time-frequency analysis</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-10, Vol.60 (5), p.6807-6821</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-4dca8e85b1d83e31e1d4bc601f7891a6c75e701adf973d61129f35ae48bc54d63</cites><orcidid>0000-0002-4584-1677 ; 0000-0002-3032-6322 ; 0000-0003-4672-0567 ; 0000-0002-0116-4790 ; 0000-0002-1557-7211 ; 0000-0003-4452-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>He, Fangmin</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Ruan, Jiangjun</creatorcontrib><title>YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>To improve the jamming cognitive level of radar in the complex and changeable electromagnetic environment, this article proposes a YOLO-CJ (YOLO network for compound jamming detection) lightweight network for compound jamming signal detection. First, the compound jamming image dataset is constructed by signal model and short-time Fourier transform. Second, based on the YOLOv7-tiny lightweight baseline model, the designed SimSPPFCSPC module, Triplet attention mechanism, and the C2f module are illustrated to improve the YOLOv7-tiny and establish the YOLO-CJ lightweight network, which aims to enhance the saliency and difference of the extracted features in the case of low SNR/JNR while effectively control the quantity of computation and parameters. Subsequently, combined with the compound jamming image dataset, the ablation experiment, algorithm comparison experiment, and robustness verification are carried out. The results demonstrate that the detection precision (mAP) and the inference time of a single image of the YOLO-CJ model can reach 98.69% and 12.73 ms, and the tradeoff value of detection precision and speed can reach the highest 79.93%. Moreover, the mAP of the YOLO-CJ for compound jamming detection under SNR / JNR ≥ 0 dB can reach more than 96%, which has good robustness and generalization ability under low SNR and JNR.</description><subject>Compounds</subject><subject>Feature extraction</subject><subject>Jamming</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar measurements</subject><subject>Time-frequency analysis</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0M1Kw0AQB_BFFIzVBxA87Auk7mQ_suutpK1agj20HjyF7e4kRpukJJHi25vQHrzMMDD_GfgRcg9sCsDM43a22EwjFokpF0wJAxckACnj0CjGL0nAGOjQRBKuyU3XfQ2j0IIHZP6xTtdhsnqiM5qWxWd_xLHSN-yPTftN86alSVMdmp_a05WtqrIu6KYsarunc-zR9WVT35Kr3O47vDv3CXlfLrbJS5iun1-TWRq64VsfCu-sRi134DVHDghe7JxikMfagFUulhgzsD43MfcKIDI5lxaF3jkpvOITAqe7rm26rsU8O7RlZdvfDFg2MmQjQzYyZGeGIfNwypSI-G9fikFE8T82l1hR</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhu, Xuan</creator><creator>Wu, Hao</creator><creator>He, Fangmin</creator><creator>Yang, Zhong</creator><creator>Meng, Jin</creator><creator>Ruan, Jiangjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4584-1677</orcidid><orcidid>https://orcid.org/0000-0002-3032-6322</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0002-0116-4790</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid><orcidid>https://orcid.org/0000-0003-4452-4108</orcidid></search><sort><creationdate>202410</creationdate><title>YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection</title><author>Zhu, Xuan ; Wu, Hao ; He, Fangmin ; Yang, Zhong ; Meng, Jin ; Ruan, Jiangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-4dca8e85b1d83e31e1d4bc601f7891a6c75e701adf973d61129f35ae48bc54d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compounds</topic><topic>Feature extraction</topic><topic>Jamming</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar measurements</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>He, Fangmin</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Ruan, Jiangjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xuan</au><au>Wu, Hao</au><au>He, Fangmin</au><au>Yang, Zhong</au><au>Meng, Jin</au><au>Ruan, Jiangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-10</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>6807</spage><epage>6821</epage><pages>6807-6821</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>To improve the jamming cognitive level of radar in the complex and changeable electromagnetic environment, this article proposes a YOLO-CJ (YOLO network for compound jamming detection) lightweight network for compound jamming signal detection. First, the compound jamming image dataset is constructed by signal model and short-time Fourier transform. Second, based on the YOLOv7-tiny lightweight baseline model, the designed SimSPPFCSPC module, Triplet attention mechanism, and the C2f module are illustrated to improve the YOLOv7-tiny and establish the YOLO-CJ lightweight network, which aims to enhance the saliency and difference of the extracted features in the case of low SNR/JNR while effectively control the quantity of computation and parameters. Subsequently, combined with the compound jamming image dataset, the ablation experiment, algorithm comparison experiment, and robustness verification are carried out. The results demonstrate that the detection precision (mAP) and the inference time of a single image of the YOLO-CJ model can reach 98.69% and 12.73 ms, and the tradeoff value of detection precision and speed can reach the highest 79.93%. Moreover, the mAP of the YOLO-CJ for compound jamming detection under SNR / JNR ≥ 0 dB can reach more than 96%, which has good robustness and generalization ability under low SNR and JNR.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3406491</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4584-1677</orcidid><orcidid>https://orcid.org/0000-0002-3032-6322</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0002-0116-4790</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid><orcidid>https://orcid.org/0000-0003-4452-4108</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-10, Vol.60 (5), p.6807-6821
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_10540186
source IEEE Electronic Library (IEL)
subjects Compounds
Feature extraction
Jamming
Radar
Radar detection
Radar measurements
Time-frequency analysis
title YOLO-CJ: A Lightweight Network for Compound Jamming Signal Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLO-CJ:%20A%20Lightweight%20Network%20for%20Compound%20Jamming%20Signal%20Detection&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhu,%20Xuan&rft.date=2024-10&rft.volume=60&rft.issue=5&rft.spage=6807&rft.epage=6821&rft.pages=6807-6821&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3406491&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3406491%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10540186&rfr_iscdi=true