Bamboo Filters: Make Resizing Smooth and Adaptive
The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2024-10, Vol.32 (5), p.3776-3791 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3791 |
---|---|
container_issue | 5 |
container_start_page | 3776 |
container_title | IEEE/ACM transactions on networking |
container_volume | 32 |
creator | Wang, Hancheng Dai, Haipeng Chen, Shusen Li, Meng Gu, Rong Chai, Huayi Zheng, Jiaqi Chen, Zhiyuan Li, Shuaituan Deng, Xianjun Chen, Guihai |
description | The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve 2.12\times lookup throughput of the logarithmic dynamic cuckoo filter. |
doi_str_mv | 10.1109/TNET.2024.3403997 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10540052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540052</ieee_id><sourcerecordid>10_1109_TNET_2024_3403997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</originalsourceid><addsrcrecordid>eNpNj89Kw0AYxBdRsFYfQPCQF0j9vv2b9VZLq0JV0HheNrsbXW2akg2CPr0J7cHTzGFmmB8hlwgzRNDX5dOynFGgfMY4MK3VEZmgEEVOhZTHgwfJcik1PSVnKX0CIAMqJwRvbVO1bbaKmz506SZ7tF8hewkp_sbte_batG3_kdmtz-be7vr4Hc7JSW03KVwcdEreVstycZ-vn-8eFvN17pAXfa6DEhwKqIKUtQiCcnTUe8dBFJY6x5xwWCkrACl6RxkUSntQmmtQVUXZlOB-13VtSl2oza6Lje1-DIIZmc3IbEZmc2AeOlf7Tgwh_MsPT0BQ9gfkDlEl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</creator><creatorcontrib>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</creatorcontrib><description>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve <inline-formula> <tex-math notation="LaTeX">2.12\times </tex-math></inline-formula> lookup throughput of the logarithmic dynamic cuckoo filter.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2024.3403997</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximate membership query ; Bamboo ; cuckoo filter ; Data structures ; Filters ; Fingerprint recognition ; Hash functions ; Memory management ; network measurement ; Probabilistic data structure ; Throughput</subject><ispartof>IEEE/ACM transactions on networking, 2024-10, Vol.32 (5), p.3776-3791</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</cites><orcidid>0009-0000-9606-1593 ; 0000-0002-6934-1685 ; 0000-0001-5764-960X ; 0000-0001-5756-9765 ; 0000-0002-1565-9997 ; 0000-0001-8403-9655 ; 0000-0003-2021-2871 ; 0000-0003-0679-1563 ; 0000-0003-0545-8187 ; 0000-0002-9322-1114 ; 0000-0002-0702-8722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hancheng</creatorcontrib><creatorcontrib>Dai, Haipeng</creatorcontrib><creatorcontrib>Chen, Shusen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gu, Rong</creatorcontrib><creatorcontrib>Chai, Huayi</creatorcontrib><creatorcontrib>Zheng, Jiaqi</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Li, Shuaituan</creatorcontrib><creatorcontrib>Deng, Xianjun</creatorcontrib><creatorcontrib>Chen, Guihai</creatorcontrib><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve <inline-formula> <tex-math notation="LaTeX">2.12\times </tex-math></inline-formula> lookup throughput of the logarithmic dynamic cuckoo filter.</description><subject>approximate membership query</subject><subject>Bamboo</subject><subject>cuckoo filter</subject><subject>Data structures</subject><subject>Filters</subject><subject>Fingerprint recognition</subject><subject>Hash functions</subject><subject>Memory management</subject><subject>network measurement</subject><subject>Probabilistic data structure</subject><subject>Throughput</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj89Kw0AYxBdRsFYfQPCQF0j9vv2b9VZLq0JV0HheNrsbXW2akg2CPr0J7cHTzGFmmB8hlwgzRNDX5dOynFGgfMY4MK3VEZmgEEVOhZTHgwfJcik1PSVnKX0CIAMqJwRvbVO1bbaKmz506SZ7tF8hewkp_sbte_batG3_kdmtz-be7vr4Hc7JSW03KVwcdEreVstycZ-vn-8eFvN17pAXfa6DEhwKqIKUtQiCcnTUe8dBFJY6x5xwWCkrACl6RxkUSntQmmtQVUXZlOB-13VtSl2oza6Lje1-DIIZmc3IbEZmc2AeOlf7Tgwh_MsPT0BQ9gfkDlEl</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wang, Hancheng</creator><creator>Dai, Haipeng</creator><creator>Chen, Shusen</creator><creator>Li, Meng</creator><creator>Gu, Rong</creator><creator>Chai, Huayi</creator><creator>Zheng, Jiaqi</creator><creator>Chen, Zhiyuan</creator><creator>Li, Shuaituan</creator><creator>Deng, Xianjun</creator><creator>Chen, Guihai</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-9606-1593</orcidid><orcidid>https://orcid.org/0000-0002-6934-1685</orcidid><orcidid>https://orcid.org/0000-0001-5764-960X</orcidid><orcidid>https://orcid.org/0000-0001-5756-9765</orcidid><orcidid>https://orcid.org/0000-0002-1565-9997</orcidid><orcidid>https://orcid.org/0000-0001-8403-9655</orcidid><orcidid>https://orcid.org/0000-0003-2021-2871</orcidid><orcidid>https://orcid.org/0000-0003-0679-1563</orcidid><orcidid>https://orcid.org/0000-0003-0545-8187</orcidid><orcidid>https://orcid.org/0000-0002-9322-1114</orcidid><orcidid>https://orcid.org/0000-0002-0702-8722</orcidid></search><sort><creationdate>202410</creationdate><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><author>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>approximate membership query</topic><topic>Bamboo</topic><topic>cuckoo filter</topic><topic>Data structures</topic><topic>Filters</topic><topic>Fingerprint recognition</topic><topic>Hash functions</topic><topic>Memory management</topic><topic>network measurement</topic><topic>Probabilistic data structure</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hancheng</creatorcontrib><creatorcontrib>Dai, Haipeng</creatorcontrib><creatorcontrib>Chen, Shusen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gu, Rong</creatorcontrib><creatorcontrib>Chai, Huayi</creatorcontrib><creatorcontrib>Zheng, Jiaqi</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Li, Shuaituan</creatorcontrib><creatorcontrib>Deng, Xianjun</creatorcontrib><creatorcontrib>Chen, Guihai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hancheng</au><au>Dai, Haipeng</au><au>Chen, Shusen</au><au>Li, Meng</au><au>Gu, Rong</au><au>Chai, Huayi</au><au>Zheng, Jiaqi</au><au>Chen, Zhiyuan</au><au>Li, Shuaituan</au><au>Deng, Xianjun</au><au>Chen, Guihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bamboo Filters: Make Resizing Smooth and Adaptive</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-10</date><risdate>2024</risdate><volume>32</volume><issue>5</issue><spage>3776</spage><epage>3791</epage><pages>3776-3791</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve <inline-formula> <tex-math notation="LaTeX">2.12\times </tex-math></inline-formula> lookup throughput of the logarithmic dynamic cuckoo filter.</abstract><pub>IEEE</pub><doi>10.1109/TNET.2024.3403997</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0000-9606-1593</orcidid><orcidid>https://orcid.org/0000-0002-6934-1685</orcidid><orcidid>https://orcid.org/0000-0001-5764-960X</orcidid><orcidid>https://orcid.org/0000-0001-5756-9765</orcidid><orcidid>https://orcid.org/0000-0002-1565-9997</orcidid><orcidid>https://orcid.org/0000-0001-8403-9655</orcidid><orcidid>https://orcid.org/0000-0003-2021-2871</orcidid><orcidid>https://orcid.org/0000-0003-0679-1563</orcidid><orcidid>https://orcid.org/0000-0003-0545-8187</orcidid><orcidid>https://orcid.org/0000-0002-9322-1114</orcidid><orcidid>https://orcid.org/0000-0002-0702-8722</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2024-10, Vol.32 (5), p.3776-3791 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_10540052 |
source | IEEE Electronic Library (IEL) |
subjects | approximate membership query Bamboo cuckoo filter Data structures Filters Fingerprint recognition Hash functions Memory management network measurement Probabilistic data structure Throughput |
title | Bamboo Filters: Make Resizing Smooth and Adaptive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bamboo%20Filters:%20Make%20Resizing%20Smooth%20and%20Adaptive&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Wang,%20Hancheng&rft.date=2024-10&rft.volume=32&rft.issue=5&rft.spage=3776&rft.epage=3791&rft.pages=3776-3791&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2024.3403997&rft_dat=%3Ccrossref_RIE%3E10_1109_TNET_2024_3403997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10540052&rfr_iscdi=true |