Bamboo Filters: Make Resizing Smooth and Adaptive

The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2024-10, Vol.32 (5), p.3776-3791
Hauptverfasser: Wang, Hancheng, Dai, Haipeng, Chen, Shusen, Li, Meng, Gu, Rong, Chai, Huayi, Zheng, Jiaqi, Chen, Zhiyuan, Li, Shuaituan, Deng, Xianjun, Chen, Guihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3791
container_issue 5
container_start_page 3776
container_title IEEE/ACM transactions on networking
container_volume 32
creator Wang, Hancheng
Dai, Haipeng
Chen, Shusen
Li, Meng
Gu, Rong
Chai, Huayi
Zheng, Jiaqi
Chen, Zhiyuan
Li, Shuaituan
Deng, Xianjun
Chen, Guihai
description The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve 2.12\times lookup throughput of the logarithmic dynamic cuckoo filter.
doi_str_mv 10.1109/TNET.2024.3403997
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10540052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540052</ieee_id><sourcerecordid>10_1109_TNET_2024_3403997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</originalsourceid><addsrcrecordid>eNpNj89Kw0AYxBdRsFYfQPCQF0j9vv2b9VZLq0JV0HheNrsbXW2akg2CPr0J7cHTzGFmmB8hlwgzRNDX5dOynFGgfMY4MK3VEZmgEEVOhZTHgwfJcik1PSVnKX0CIAMqJwRvbVO1bbaKmz506SZ7tF8hewkp_sbte_batG3_kdmtz-be7vr4Hc7JSW03KVwcdEreVstycZ-vn-8eFvN17pAXfa6DEhwKqIKUtQiCcnTUe8dBFJY6x5xwWCkrACl6RxkUSntQmmtQVUXZlOB-13VtSl2oza6Lje1-DIIZmc3IbEZmc2AeOlf7Tgwh_MsPT0BQ9gfkDlEl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</creator><creatorcontrib>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</creatorcontrib><description>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.12\times &lt;/tex-math&gt;&lt;/inline-formula&gt; lookup throughput of the logarithmic dynamic cuckoo filter.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2024.3403997</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximate membership query ; Bamboo ; cuckoo filter ; Data structures ; Filters ; Fingerprint recognition ; Hash functions ; Memory management ; network measurement ; Probabilistic data structure ; Throughput</subject><ispartof>IEEE/ACM transactions on networking, 2024-10, Vol.32 (5), p.3776-3791</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</cites><orcidid>0009-0000-9606-1593 ; 0000-0002-6934-1685 ; 0000-0001-5764-960X ; 0000-0001-5756-9765 ; 0000-0002-1565-9997 ; 0000-0001-8403-9655 ; 0000-0003-2021-2871 ; 0000-0003-0679-1563 ; 0000-0003-0545-8187 ; 0000-0002-9322-1114 ; 0000-0002-0702-8722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hancheng</creatorcontrib><creatorcontrib>Dai, Haipeng</creatorcontrib><creatorcontrib>Chen, Shusen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gu, Rong</creatorcontrib><creatorcontrib>Chai, Huayi</creatorcontrib><creatorcontrib>Zheng, Jiaqi</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Li, Shuaituan</creatorcontrib><creatorcontrib>Deng, Xianjun</creatorcontrib><creatorcontrib>Chen, Guihai</creatorcontrib><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.12\times &lt;/tex-math&gt;&lt;/inline-formula&gt; lookup throughput of the logarithmic dynamic cuckoo filter.</description><subject>approximate membership query</subject><subject>Bamboo</subject><subject>cuckoo filter</subject><subject>Data structures</subject><subject>Filters</subject><subject>Fingerprint recognition</subject><subject>Hash functions</subject><subject>Memory management</subject><subject>network measurement</subject><subject>Probabilistic data structure</subject><subject>Throughput</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj89Kw0AYxBdRsFYfQPCQF0j9vv2b9VZLq0JV0HheNrsbXW2akg2CPr0J7cHTzGFmmB8hlwgzRNDX5dOynFGgfMY4MK3VEZmgEEVOhZTHgwfJcik1PSVnKX0CIAMqJwRvbVO1bbaKmz506SZ7tF8hewkp_sbte_batG3_kdmtz-be7vr4Hc7JSW03KVwcdEreVstycZ-vn-8eFvN17pAXfa6DEhwKqIKUtQiCcnTUe8dBFJY6x5xwWCkrACl6RxkUSntQmmtQVUXZlOB-13VtSl2oza6Lje1-DIIZmc3IbEZmc2AeOlf7Tgwh_MsPT0BQ9gfkDlEl</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wang, Hancheng</creator><creator>Dai, Haipeng</creator><creator>Chen, Shusen</creator><creator>Li, Meng</creator><creator>Gu, Rong</creator><creator>Chai, Huayi</creator><creator>Zheng, Jiaqi</creator><creator>Chen, Zhiyuan</creator><creator>Li, Shuaituan</creator><creator>Deng, Xianjun</creator><creator>Chen, Guihai</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-9606-1593</orcidid><orcidid>https://orcid.org/0000-0002-6934-1685</orcidid><orcidid>https://orcid.org/0000-0001-5764-960X</orcidid><orcidid>https://orcid.org/0000-0001-5756-9765</orcidid><orcidid>https://orcid.org/0000-0002-1565-9997</orcidid><orcidid>https://orcid.org/0000-0001-8403-9655</orcidid><orcidid>https://orcid.org/0000-0003-2021-2871</orcidid><orcidid>https://orcid.org/0000-0003-0679-1563</orcidid><orcidid>https://orcid.org/0000-0003-0545-8187</orcidid><orcidid>https://orcid.org/0000-0002-9322-1114</orcidid><orcidid>https://orcid.org/0000-0002-0702-8722</orcidid></search><sort><creationdate>202410</creationdate><title>Bamboo Filters: Make Resizing Smooth and Adaptive</title><author>Wang, Hancheng ; Dai, Haipeng ; Chen, Shusen ; Li, Meng ; Gu, Rong ; Chai, Huayi ; Zheng, Jiaqi ; Chen, Zhiyuan ; Li, Shuaituan ; Deng, Xianjun ; Chen, Guihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-9e754080be66f5e5241c2ddc4058a2cc3c5c1b7a50121dc230879d0794907bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>approximate membership query</topic><topic>Bamboo</topic><topic>cuckoo filter</topic><topic>Data structures</topic><topic>Filters</topic><topic>Fingerprint recognition</topic><topic>Hash functions</topic><topic>Memory management</topic><topic>network measurement</topic><topic>Probabilistic data structure</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hancheng</creatorcontrib><creatorcontrib>Dai, Haipeng</creatorcontrib><creatorcontrib>Chen, Shusen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Gu, Rong</creatorcontrib><creatorcontrib>Chai, Huayi</creatorcontrib><creatorcontrib>Zheng, Jiaqi</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Li, Shuaituan</creatorcontrib><creatorcontrib>Deng, Xianjun</creatorcontrib><creatorcontrib>Chen, Guihai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hancheng</au><au>Dai, Haipeng</au><au>Chen, Shusen</au><au>Li, Meng</au><au>Gu, Rong</au><au>Chai, Huayi</au><au>Zheng, Jiaqi</au><au>Chen, Zhiyuan</au><au>Li, Shuaituan</au><au>Deng, Xianjun</au><au>Chen, Guihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bamboo Filters: Make Resizing Smooth and Adaptive</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-10</date><risdate>2024</risdate><volume>32</volume><issue>5</issue><spage>3776</spage><epage>3791</epage><pages>3776-3791</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>The approximate membership query (AMQ) data structure is a kind of space-efficient probabilistic data structure. It can approximately indicate whether an element exists in a set. The AMQ data structure has been widely used in network measurements, network security, network caching, etc. Resizing is an extensively utilized operation of the AMQ data structure, but it can lead to system performance degradation. We summarize two main problems that lead to such degradation. Specifically, one of them is that the resizing operation can block other operations, while the other one is that the throughput of AMQ structures will deteriorate after multiple resizing operations due to more computation cost. However, existing related work cannot alleviate both of them. Therefore, we propose a novel AMQ data structure called bamboo filters, which can alleviate the two problems simultaneously. Bamboo filters can insert, look up, and delete an element in constant time. They can also dynamically resize in a fine-grained way. Furthermore, we propose space utilization adaptive bamboo filters that adaptively trigger resizing operations according to the space utilization, thereby achieving lower average memory consumption. Experimental results show that our scheme significantly outperforms state-of-the-art work. Especially, bamboo filters achieve &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.12\times &lt;/tex-math&gt;&lt;/inline-formula&gt; lookup throughput of the logarithmic dynamic cuckoo filter.</abstract><pub>IEEE</pub><doi>10.1109/TNET.2024.3403997</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0000-9606-1593</orcidid><orcidid>https://orcid.org/0000-0002-6934-1685</orcidid><orcidid>https://orcid.org/0000-0001-5764-960X</orcidid><orcidid>https://orcid.org/0000-0001-5756-9765</orcidid><orcidid>https://orcid.org/0000-0002-1565-9997</orcidid><orcidid>https://orcid.org/0000-0001-8403-9655</orcidid><orcidid>https://orcid.org/0000-0003-2021-2871</orcidid><orcidid>https://orcid.org/0000-0003-0679-1563</orcidid><orcidid>https://orcid.org/0000-0003-0545-8187</orcidid><orcidid>https://orcid.org/0000-0002-9322-1114</orcidid><orcidid>https://orcid.org/0000-0002-0702-8722</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2024-10, Vol.32 (5), p.3776-3791
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_10540052
source IEEE Electronic Library (IEL)
subjects approximate membership query
Bamboo
cuckoo filter
Data structures
Filters
Fingerprint recognition
Hash functions
Memory management
network measurement
Probabilistic data structure
Throughput
title Bamboo Filters: Make Resizing Smooth and Adaptive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bamboo%20Filters:%20Make%20Resizing%20Smooth%20and%20Adaptive&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Wang,%20Hancheng&rft.date=2024-10&rft.volume=32&rft.issue=5&rft.spage=3776&rft.epage=3791&rft.pages=3776-3791&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2024.3403997&rft_dat=%3Ccrossref_RIE%3E10_1109_TNET_2024_3403997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10540052&rfr_iscdi=true