Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes

In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-07, Vol.28 (7), p.1504-1508
Hauptverfasser: Kim, Taehyun, Sung Park, Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1508
container_issue 7
container_start_page 1504
container_title IEEE communications letters
container_volume 28
creator Kim, Taehyun
Sung Park, Joo
description In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.
doi_str_mv 10.1109/LCOMM.2024.3404110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10536888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536888</ieee_id><sourcerecordid>3079408196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT1q_YPqKUl5S2iPZuOclGatU2xU4O_Htc2gOX3dVoZkf6CLlnMGEM7FNZLGazCQcuJ0KCTNoFGTGlTMbTuEw3GJtpbc01uYlxAwCGKzYieo5D8Fu6xG2bFV0IWPfY0Nl6ny2HHZ1i3TUYaNsFOv-i5fSzoEVS4i25av024t15j8nq9WVVvGfl4u2jeC6zmkvdZ1aBsBy8RpTCi0ZUvOa8sl5ZhlVeGWtByzyXdWWEMsw3ynLvjfSQ5wBiTB5Pbw-h-x4w9m7TDWGfGp0AbSUYZvPk4idXHboYA7buENY7H34cA3fk4_74uCMfd-aTQg-n0BoR_wWUyI0x4hfMgl3W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408196</pqid></control><display><type>article</type><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Taehyun ; Sung Park, Joo</creator><creatorcontrib>Kim, Taehyun ; Sung Park, Joo</creatorcontrib><description>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3404110</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Codes ; Complexity theory ; Decoders ; Decoding ; deep learning ; Error correcting codes ; Error correction ; iterative decoding ; LDPC codes ; Machine learning ; Machine learning algorithms ; min-sum decoding ; Network latency ; Neural networks ; Parity check codes ; Real time ; Resource utilization ; self-correction ; Training</subject><ispartof>IEEE communications letters, 2024-07, Vol.28 (7), p.1504-1508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</cites><orcidid>0000-0003-4147-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Sung Park, Joo</creatorcontrib><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</description><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Complexity theory</subject><subject>Decoders</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>iterative decoding</subject><subject>LDPC codes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>min-sum decoding</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Parity check codes</subject><subject>Real time</subject><subject>Resource utilization</subject><subject>self-correction</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT1q_YPqKUl5S2iPZuOclGatU2xU4O_Htc2gOX3dVoZkf6CLlnMGEM7FNZLGazCQcuJ0KCTNoFGTGlTMbTuEw3GJtpbc01uYlxAwCGKzYieo5D8Fu6xG2bFV0IWPfY0Nl6ny2HHZ1i3TUYaNsFOv-i5fSzoEVS4i25av024t15j8nq9WVVvGfl4u2jeC6zmkvdZ1aBsBy8RpTCi0ZUvOa8sl5ZhlVeGWtByzyXdWWEMsw3ynLvjfSQ5wBiTB5Pbw-h-x4w9m7TDWGfGp0AbSUYZvPk4idXHboYA7buENY7H34cA3fk4_74uCMfd-aTQg-n0BoR_wWUyI0x4hfMgl3W</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, Taehyun</creator><creator>Sung Park, Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4147-7860</orcidid></search><sort><creationdate>20240701</creationdate><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><author>Kim, Taehyun ; Sung Park, Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Complexity theory</topic><topic>Decoders</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>iterative decoding</topic><topic>LDPC codes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>min-sum decoding</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Parity check codes</topic><topic>Real time</topic><topic>Resource utilization</topic><topic>self-correction</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Sung Park, Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Taehyun</au><au>Sung Park, Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>1504</spage><epage>1508</epage><pages>1504-1508</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3404110</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4147-7860</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2024-07, Vol.28 (7), p.1504-1508
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_10536888
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Codes
Complexity theory
Decoders
Decoding
deep learning
Error correcting codes
Error correction
iterative decoding
LDPC codes
Machine learning
Machine learning algorithms
min-sum decoding
Network latency
Neural networks
Parity check codes
Real time
Resource utilization
self-correction
Training
title Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Self-Corrected%20Min-Sum%20Decoder%20for%20NR%20LDPC%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Kim,%20Taehyun&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=1504&rft.epage=1508&rft.pages=1504-1508&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3404110&rft_dat=%3Cproquest_RIE%3E3079408196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408196&rft_id=info:pmid/&rft_ieee_id=10536888&rfr_iscdi=true