Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes
In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes us...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2024-07, Vol.28 (7), p.1504-1508 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1508 |
---|---|
container_issue | 7 |
container_start_page | 1504 |
container_title | IEEE communications letters |
container_volume | 28 |
creator | Kim, Taehyun Sung Park, Joo |
description | In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders. |
doi_str_mv | 10.1109/LCOMM.2024.3404110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10536888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536888</ieee_id><sourcerecordid>3079408196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT1q_YPqKUl5S2iPZuOclGatU2xU4O_Htc2gOX3dVoZkf6CLlnMGEM7FNZLGazCQcuJ0KCTNoFGTGlTMbTuEw3GJtpbc01uYlxAwCGKzYieo5D8Fu6xG2bFV0IWPfY0Nl6ny2HHZ1i3TUYaNsFOv-i5fSzoEVS4i25av024t15j8nq9WVVvGfl4u2jeC6zmkvdZ1aBsBy8RpTCi0ZUvOa8sl5ZhlVeGWtByzyXdWWEMsw3ynLvjfSQ5wBiTB5Pbw-h-x4w9m7TDWGfGp0AbSUYZvPk4idXHboYA7buENY7H34cA3fk4_74uCMfd-aTQg-n0BoR_wWUyI0x4hfMgl3W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408196</pqid></control><display><type>article</type><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Taehyun ; Sung Park, Joo</creator><creatorcontrib>Kim, Taehyun ; Sung Park, Joo</creatorcontrib><description>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3404110</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Codes ; Complexity theory ; Decoders ; Decoding ; deep learning ; Error correcting codes ; Error correction ; iterative decoding ; LDPC codes ; Machine learning ; Machine learning algorithms ; min-sum decoding ; Network latency ; Neural networks ; Parity check codes ; Real time ; Resource utilization ; self-correction ; Training</subject><ispartof>IEEE communications letters, 2024-07, Vol.28 (7), p.1504-1508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</cites><orcidid>0000-0003-4147-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Sung Park, Joo</creatorcontrib><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</description><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Complexity theory</subject><subject>Decoders</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>iterative decoding</subject><subject>LDPC codes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>min-sum decoding</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Parity check codes</subject><subject>Real time</subject><subject>Resource utilization</subject><subject>self-correction</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xT1q_YPqKUl5S2iPZuOclGatU2xU4O_Htc2gOX3dVoZkf6CLlnMGEM7FNZLGazCQcuJ0KCTNoFGTGlTMbTuEw3GJtpbc01uYlxAwCGKzYieo5D8Fu6xG2bFV0IWPfY0Nl6ny2HHZ1i3TUYaNsFOv-i5fSzoEVS4i25av024t15j8nq9WVVvGfl4u2jeC6zmkvdZ1aBsBy8RpTCi0ZUvOa8sl5ZhlVeGWtByzyXdWWEMsw3ynLvjfSQ5wBiTB5Pbw-h-x4w9m7TDWGfGp0AbSUYZvPk4idXHboYA7buENY7H34cA3fk4_74uCMfd-aTQg-n0BoR_wWUyI0x4hfMgl3W</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, Taehyun</creator><creator>Sung Park, Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4147-7860</orcidid></search><sort><creationdate>20240701</creationdate><title>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</title><author>Kim, Taehyun ; Sung Park, Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-9503920a7ee43a3d3b2c22b9a591eb6b899074664cb83581ad592aa84a066003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Complexity theory</topic><topic>Decoders</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>iterative decoding</topic><topic>LDPC codes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>min-sum decoding</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Parity check codes</topic><topic>Real time</topic><topic>Resource utilization</topic><topic>self-correction</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Sung Park, Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Taehyun</au><au>Sung Park, Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>1504</spage><epage>1508</epage><pages>1504-1508</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, a neural self-corrected min-sum (NSCMS) decoder is proposed for 5G new radio (NR) low-density parity-check (LDPC) codes. Training in real-time on a rapidly changing channel requires low latency and minimal resource utilization. Unfortunately, typical neural decoders for LDPC codes use large and deep neural networks proportional to the code length, leading to latency and resource problems. In the network of NSCMS similar to network model pruning, certain nodes meeting the self correction condition are deleted and excluded from learning. This reduces the computational complexity of learning, compared to conventional networks. Thus, the NSCMS decoder has high practicality in real-time training using machine learning. Furthermore, self-correction allows for more reliable message-based learning and significantly improves performance. Simulation results demonstrate that NSCMS decoders exhibit lower error rates than previously proposed min-sum decoders.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3404110</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4147-7860</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2024-07, Vol.28 (7), p.1504-1508 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_10536888 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Codes Complexity theory Decoders Decoding deep learning Error correcting codes Error correction iterative decoding LDPC codes Machine learning Machine learning algorithms min-sum decoding Network latency Neural networks Parity check codes Real time Resource utilization self-correction Training |
title | Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Self-Corrected%20Min-Sum%20Decoder%20for%20NR%20LDPC%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Kim,%20Taehyun&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=1504&rft.epage=1508&rft.pages=1504-1508&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3404110&rft_dat=%3Cproquest_RIE%3E3079408196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408196&rft_id=info:pmid/&rft_ieee_id=10536888&rfr_iscdi=true |