Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid
Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-09, Vol.39 (9), p.10820-10833 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10833 |
---|---|
container_issue | 9 |
container_start_page | 10820 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Long, Bo Yang, Wandi Hu, JieFeng Rodriguez, Jose Chong, Kil To |
description | Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness. |
doi_str_mv | 10.1109/TPEL.2024.3404356 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10536652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536652</ieee_id><sourcerecordid>10_1109_TPEL_2024_3404356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</originalsourceid><addsrcrecordid>eNpNkE1qwzAQhUVpoWnaAxS60AWc6s-2vCwhSQuGBJqsjSSPQa1iB0kkzSV65soki25mhm_ee4uH0DMlM0pJ9brdLOoZI0zMuCCC58UNmtBK0IxQUt6iCZEyz2RV8Xv0EMIXIVTkhE7Qbz2csvmwPzj4sfGMVd_iGkJIrA_gjyraI_QJ4HWIfjiFb4s_o9LWjeq5txG8HXrcDR5vlFfOgcNLr0xMVDm88rYds3owEVqcriP45Al417fg09TKqd6k3yh9RHedcgGernuKdsvFdv6e1evVx_ytzgyjMmZUccaEKWVhSlEYxdqOtDkUoEWltS5ZYYQxguiuLLkmWmrZkbKiueQgE-FTRC-5xg8heOiag7d75c8NJc1YaDMW2oyFNtdCk-fl4rEA8E-f86LIGf8DY5F14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</creator><creatorcontrib>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</creatorcontrib><description>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3404356</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit stability ; Eigenvalues and eigenfunctions ; Fractional inductor and capacitor ; Gershgorin theorem ; Integrated circuit modeling ; Mathematical models ; Ostrowski theorem ; Phase locked loops ; Power system stability ; Stability criteria ; stability margin ; T-type grid-connected converter</subject><ispartof>IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.10820-10833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</cites><orcidid>0000-0001-6725-4564 ; 0009-0006-7826-8236 ; 0000-0002-1410-4121 ; 0000-0003-2953-6362 ; 0000-0002-1952-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, JieFeng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</description><subject>Circuit stability</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fractional inductor and capacitor</subject><subject>Gershgorin theorem</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Ostrowski theorem</subject><subject>Phase locked loops</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>stability margin</subject><subject>T-type grid-connected converter</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1qwzAQhUVpoWnaAxS60AWc6s-2vCwhSQuGBJqsjSSPQa1iB0kkzSV65soki25mhm_ee4uH0DMlM0pJ9brdLOoZI0zMuCCC58UNmtBK0IxQUt6iCZEyz2RV8Xv0EMIXIVTkhE7Qbz2csvmwPzj4sfGMVd_iGkJIrA_gjyraI_QJ4HWIfjiFb4s_o9LWjeq5txG8HXrcDR5vlFfOgcNLr0xMVDm88rYds3owEVqcriP45Al417fg09TKqd6k3yh9RHedcgGernuKdsvFdv6e1evVx_ytzgyjMmZUccaEKWVhSlEYxdqOtDkUoEWltS5ZYYQxguiuLLkmWmrZkbKiueQgE-FTRC-5xg8heOiag7d75c8NJc1YaDMW2oyFNtdCk-fl4rEA8E-f86LIGf8DY5F14A</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Long, Bo</creator><creator>Yang, Wandi</creator><creator>Hu, JieFeng</creator><creator>Rodriguez, Jose</creator><creator>Chong, Kil To</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6725-4564</orcidid><orcidid>https://orcid.org/0009-0006-7826-8236</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></search><sort><creationdate>20240901</creationdate><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><author>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit stability</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fractional inductor and capacitor</topic><topic>Gershgorin theorem</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Ostrowski theorem</topic><topic>Phase locked loops</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>stability margin</topic><topic>T-type grid-connected converter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, JieFeng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Bo</au><au>Yang, Wandi</au><au>Hu, JieFeng</au><au>Rodriguez, Jose</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>10820</spage><epage>10833</epage><pages>10820-10833</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3404356</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6725-4564</orcidid><orcidid>https://orcid.org/0009-0006-7826-8236</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.10820-10833 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10536652 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit stability Eigenvalues and eigenfunctions Fractional inductor and capacitor Gershgorin theorem Integrated circuit modeling Mathematical models Ostrowski theorem Phase locked loops Power system stability Stability criteria stability margin T-type grid-connected converter |
title | Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20and%20Less-Conservativeness%20Ostrowski%20Stability%20Criterion%20for%20Parallel%20Fractional%20Grid-Connected%20Converters%20Under%20Unbalanced%20Grid&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Long,%20Bo&rft.date=2024-09-01&rft.volume=39&rft.issue=9&rft.spage=10820&rft.epage=10833&rft.pages=10820-10833&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3404356&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3404356%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10536652&rfr_iscdi=true |