Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid

Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2024-09, Vol.39 (9), p.10820-10833
Hauptverfasser: Long, Bo, Yang, Wandi, Hu, JieFeng, Rodriguez, Jose, Chong, Kil To
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10833
container_issue 9
container_start_page 10820
container_title IEEE transactions on power electronics
container_volume 39
creator Long, Bo
Yang, Wandi
Hu, JieFeng
Rodriguez, Jose
Chong, Kil To
description Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.
doi_str_mv 10.1109/TPEL.2024.3404356
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10536652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536652</ieee_id><sourcerecordid>10_1109_TPEL_2024_3404356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</originalsourceid><addsrcrecordid>eNpNkE1qwzAQhUVpoWnaAxS60AWc6s-2vCwhSQuGBJqsjSSPQa1iB0kkzSV65soki25mhm_ee4uH0DMlM0pJ9brdLOoZI0zMuCCC58UNmtBK0IxQUt6iCZEyz2RV8Xv0EMIXIVTkhE7Qbz2csvmwPzj4sfGMVd_iGkJIrA_gjyraI_QJ4HWIfjiFb4s_o9LWjeq5txG8HXrcDR5vlFfOgcNLr0xMVDm88rYds3owEVqcriP45Al417fg09TKqd6k3yh9RHedcgGernuKdsvFdv6e1evVx_ytzgyjMmZUccaEKWVhSlEYxdqOtDkUoEWltS5ZYYQxguiuLLkmWmrZkbKiueQgE-FTRC-5xg8heOiag7d75c8NJc1YaDMW2oyFNtdCk-fl4rEA8E-f86LIGf8DY5F14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</creator><creatorcontrib>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</creatorcontrib><description>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3404356</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit stability ; Eigenvalues and eigenfunctions ; Fractional inductor and capacitor ; Gershgorin theorem ; Integrated circuit modeling ; Mathematical models ; Ostrowski theorem ; Phase locked loops ; Power system stability ; Stability criteria ; stability margin ; T-type grid-connected converter</subject><ispartof>IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.10820-10833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</cites><orcidid>0000-0001-6725-4564 ; 0009-0006-7826-8236 ; 0000-0002-1410-4121 ; 0000-0003-2953-6362 ; 0000-0002-1952-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, JieFeng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</description><subject>Circuit stability</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fractional inductor and capacitor</subject><subject>Gershgorin theorem</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Ostrowski theorem</subject><subject>Phase locked loops</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>stability margin</subject><subject>T-type grid-connected converter</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1qwzAQhUVpoWnaAxS60AWc6s-2vCwhSQuGBJqsjSSPQa1iB0kkzSV65soki25mhm_ee4uH0DMlM0pJ9brdLOoZI0zMuCCC58UNmtBK0IxQUt6iCZEyz2RV8Xv0EMIXIVTkhE7Qbz2csvmwPzj4sfGMVd_iGkJIrA_gjyraI_QJ4HWIfjiFb4s_o9LWjeq5txG8HXrcDR5vlFfOgcNLr0xMVDm88rYds3owEVqcriP45Al417fg09TKqd6k3yh9RHedcgGernuKdsvFdv6e1evVx_ytzgyjMmZUccaEKWVhSlEYxdqOtDkUoEWltS5ZYYQxguiuLLkmWmrZkbKiueQgE-FTRC-5xg8heOiag7d75c8NJc1YaDMW2oyFNtdCk-fl4rEA8E-f86LIGf8DY5F14A</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Long, Bo</creator><creator>Yang, Wandi</creator><creator>Hu, JieFeng</creator><creator>Rodriguez, Jose</creator><creator>Chong, Kil To</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6725-4564</orcidid><orcidid>https://orcid.org/0009-0006-7826-8236</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></search><sort><creationdate>20240901</creationdate><title>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</title><author>Long, Bo ; Yang, Wandi ; Hu, JieFeng ; Rodriguez, Jose ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-1a3224c786c746ca2df0d5e6eb49bbb726c4cc40bf773b0b8b8f0791583e873b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit stability</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fractional inductor and capacitor</topic><topic>Gershgorin theorem</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Ostrowski theorem</topic><topic>Phase locked loops</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>stability margin</topic><topic>T-type grid-connected converter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, JieFeng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Bo</au><au>Yang, Wandi</au><au>Hu, JieFeng</au><au>Rodriguez, Jose</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>10820</spage><epage>10833</epage><pages>10820-10833</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Three-level T-type converter (3LT 2 C) with LCL filter have been widely used in renewable energy power generation system. Recent articles have shown that, due to the fractional characteristics of the inductance and capacitance of the LCL filter, the fractional-order model has higher accuracy than integer-order model in describing the static- and dynamic-behaviors of the physical LCL -3LT 2 C converter. To evaluate the stability of the grid-connected fractional LCL -3LT 2 C, fractional impedance model is often used. However, due to the fractional calculus, the overall order of the characteristic equation would increase, thus leading to high computation burden. Existing eigenvalues estimation method is not accurate enough for excessive estimation range. To solve these problems, a low-complexity and less-conservative stability criteria based on Ostrowski theorem is proposed, which determines the critical stability point according to the system loop gain matrix. First, the fractional sequence admittance models for a single and multiparallel F3LT 2 C are established under unbalanced grid. Second, the critical stability points of the system are determined by Ostrowski theorem. Simulation and experimental results verify the modeling accuracy of the proposed fractional model and the effectiveness of the proposed stability theorem in low-complexity and less-conservativeness.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3404356</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6725-4564</orcidid><orcidid>https://orcid.org/0009-0006-7826-8236</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.10820-10833
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10536652
source IEEE Electronic Library (IEL)
subjects Circuit stability
Eigenvalues and eigenfunctions
Fractional inductor and capacitor
Gershgorin theorem
Integrated circuit modeling
Mathematical models
Ostrowski theorem
Phase locked loops
Power system stability
Stability criteria
stability margin
T-type grid-connected converter
title Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20and%20Less-Conservativeness%20Ostrowski%20Stability%20Criterion%20for%20Parallel%20Fractional%20Grid-Connected%20Converters%20Under%20Unbalanced%20Grid&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Long,%20Bo&rft.date=2024-09-01&rft.volume=39&rft.issue=9&rft.spage=10820&rft.epage=10833&rft.pages=10820-10833&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3404356&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3404356%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10536652&rfr_iscdi=true