An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data

Recently, anomaly detection (AD) in streaming data gained significant attention among research communities due to its applicability in finance, business, healthcare, education, etc. The recent developments of deep learning (DL) models find helpful in the detection and classification of anomalies. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2024-05, Vol.21 (5), p.249-260
Hauptverfasser: Rajakumar, R., Devi, S. Sathiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 5
container_start_page 249
container_title China communications
container_volume 21
creator Rajakumar, R.
Devi, S. Sathiya
description Recently, anomaly detection (AD) in streaming data gained significant attention among research communities due to its applicability in finance, business, healthcare, education, etc. The recent developments of deep learning (DL) models find helpful in the detection and classification of anomalies. This article designs an oversampling with an optimal deep learning-based streaming data classification (OS-ODLSDC) model. The aim of the OS-ODLSDC model is to recognize and classify the presence of anomalies in the streaming data. The proposed OS-ODLSDC model initially undergoes preprocessing step. Since streaming data is unbalanced, support vector machine (SVM)-Synthetic Minority Over-sampling Technique (SVM-SMOTE) is applied for oversampling process. Besides, the OS-ODLSDC model employs bidirectional long short-term memory (BiLSTM) for AD and classification. Finally, the root means square propagation (RMSProp) optimizer is applied for optimal hyperparameter tuning of the BiL-STM model. For ensuring the promising performance of the OS-ODLSDC model, a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018, KDD-Cup 1999, and NSL-KDD datasets.
doi_str_mv 10.23919/JCC.ja.2022-0592
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10536031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536031</ieee_id><sourcerecordid>10_23919_JCC_ja_2022_0592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-ce349fe952a17e1b5a61a964fcc45d03a68b8ce0f87b63bf024f8662109356c83</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRbVooSHNBxS60A841cOW7WUwfRLopl2LsTxqFWzJyKIlf1876SKzGYZ77zBzCLnjbCtkzeuHt6bZHmArmBAZK2pxRVZclTIr8ry8IZtpOrC5KqWkEisy7DxFa51x6BMdQod97_wXDZaGH4wTDONp_nXpm4YxuQF62iGOtEeIfpHQQ9tjR8GHWTzOakKTXPDUeTqliDAstg4S3JJrC_2Em_--Jp9Pjx_NS7Z_f35tdvvM8LxKmUGZ1xbrQgAvkbcFKA61yq0xedExCapqK4PMVmWrZGuZyO38kOCsloUylVwTft5rYpimiFaPcb48HjVn-oRJz5j0AfSCSS-Y5sz9OeMQ8cJfSMUkl3_mlGh5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data</title><source>IEEE Electronic Library (IEL)</source><creator>Rajakumar, R. ; Devi, S. Sathiya</creator><creatorcontrib>Rajakumar, R. ; Devi, S. Sathiya</creatorcontrib><description>Recently, anomaly detection (AD) in streaming data gained significant attention among research communities due to its applicability in finance, business, healthcare, education, etc. The recent developments of deep learning (DL) models find helpful in the detection and classification of anomalies. This article designs an oversampling with an optimal deep learning-based streaming data classification (OS-ODLSDC) model. The aim of the OS-ODLSDC model is to recognize and classify the presence of anomalies in the streaming data. The proposed OS-ODLSDC model initially undergoes preprocessing step. Since streaming data is unbalanced, support vector machine (SVM)-Synthetic Minority Over-sampling Technique (SVM-SMOTE) is applied for oversampling process. Besides, the OS-ODLSDC model employs bidirectional long short-term memory (BiLSTM) for AD and classification. Finally, the root means square propagation (RMSProp) optimizer is applied for optimal hyperparameter tuning of the BiL-STM model. For ensuring the promising performance of the OS-ODLSDC model, a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018, KDD-Cup 1999, and NSL-KDD datasets.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.ja.2022-0592</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>anomaly detection ; Data models ; Deep learning ; Feature extraction ; hyperparameter optimization ; Logic gates ; Long short term memory ; oversampling ; SMOTE ; streaming data ; Support vector machines ; Vectors</subject><ispartof>China communications, 2024-05, Vol.21 (5), p.249-260</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajakumar, R.</creatorcontrib><creatorcontrib>Devi, S. Sathiya</creatorcontrib><title>An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>Recently, anomaly detection (AD) in streaming data gained significant attention among research communities due to its applicability in finance, business, healthcare, education, etc. The recent developments of deep learning (DL) models find helpful in the detection and classification of anomalies. This article designs an oversampling with an optimal deep learning-based streaming data classification (OS-ODLSDC) model. The aim of the OS-ODLSDC model is to recognize and classify the presence of anomalies in the streaming data. The proposed OS-ODLSDC model initially undergoes preprocessing step. Since streaming data is unbalanced, support vector machine (SVM)-Synthetic Minority Over-sampling Technique (SVM-SMOTE) is applied for oversampling process. Besides, the OS-ODLSDC model employs bidirectional long short-term memory (BiLSTM) for AD and classification. Finally, the root means square propagation (RMSProp) optimizer is applied for optimal hyperparameter tuning of the BiL-STM model. For ensuring the promising performance of the OS-ODLSDC model, a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018, KDD-Cup 1999, and NSL-KDD datasets.</description><subject>anomaly detection</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>hyperparameter optimization</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>oversampling</subject><subject>SMOTE</subject><subject>streaming data</subject><subject>Support vector machines</subject><subject>Vectors</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRbVooSHNBxS60A841cOW7WUwfRLopl2LsTxqFWzJyKIlf1876SKzGYZ77zBzCLnjbCtkzeuHt6bZHmArmBAZK2pxRVZclTIr8ry8IZtpOrC5KqWkEisy7DxFa51x6BMdQod97_wXDZaGH4wTDONp_nXpm4YxuQF62iGOtEeIfpHQQ9tjR8GHWTzOakKTXPDUeTqliDAstg4S3JJrC_2Em_--Jp9Pjx_NS7Z_f35tdvvM8LxKmUGZ1xbrQgAvkbcFKA61yq0xedExCapqK4PMVmWrZGuZyO38kOCsloUylVwTft5rYpimiFaPcb48HjVn-oRJz5j0AfSCSS-Y5sz9OeMQ8cJfSMUkl3_mlGh5</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Rajakumar, R.</creator><creator>Devi, S. Sathiya</creator><general>China Institute of Communications</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202405</creationdate><title>An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data</title><author>Rajakumar, R. ; Devi, S. Sathiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-ce349fe952a17e1b5a61a964fcc45d03a68b8ce0f87b63bf024f8662109356c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anomaly detection</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>hyperparameter optimization</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>oversampling</topic><topic>SMOTE</topic><topic>streaming data</topic><topic>Support vector machines</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajakumar, R.</creatorcontrib><creatorcontrib>Devi, S. Sathiya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajakumar, R.</au><au>Devi, S. Sathiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2024-05</date><risdate>2024</risdate><volume>21</volume><issue>5</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>Recently, anomaly detection (AD) in streaming data gained significant attention among research communities due to its applicability in finance, business, healthcare, education, etc. The recent developments of deep learning (DL) models find helpful in the detection and classification of anomalies. This article designs an oversampling with an optimal deep learning-based streaming data classification (OS-ODLSDC) model. The aim of the OS-ODLSDC model is to recognize and classify the presence of anomalies in the streaming data. The proposed OS-ODLSDC model initially undergoes preprocessing step. Since streaming data is unbalanced, support vector machine (SVM)-Synthetic Minority Over-sampling Technique (SVM-SMOTE) is applied for oversampling process. Besides, the OS-ODLSDC model employs bidirectional long short-term memory (BiLSTM) for AD and classification. Finally, the root means square propagation (RMSProp) optimizer is applied for optimal hyperparameter tuning of the BiL-STM model. For ensuring the promising performance of the OS-ODLSDC model, a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018, KDD-Cup 1999, and NSL-KDD datasets.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.ja.2022-0592</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1673-5447
ispartof China communications, 2024-05, Vol.21 (5), p.249-260
issn 1673-5447
language eng
recordid cdi_ieee_primary_10536031
source IEEE Electronic Library (IEL)
subjects anomaly detection
Data models
Deep learning
Feature extraction
hyperparameter optimization
Logic gates
Long short term memory
oversampling
SMOTE
streaming data
Support vector machines
Vectors
title An efficient modelling of oversampling with optimal deep learning enabled anomaly detection in streaming data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20modelling%20of%20oversampling%20with%20optimal%20deep%20learning%20enabled%20anomaly%20detection%20in%20streaming%20data&rft.jtitle=China%20communications&rft.au=Rajakumar,%20R.&rft.date=2024-05&rft.volume=21&rft.issue=5&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.ja.2022-0592&rft_dat=%3Ccrossref_RIE%3E10_23919_JCC_ja_2022_0592%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10536031&rfr_iscdi=true