Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways

Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.72662-72671
Hauptverfasser: Rama Sree, S., Laxmi Lydia, E., Altaf Ahmed, Mohammed, Radhika, K., Ishak, Mohamad Khairi, Ammar, Khalid, Fauzi Packeer Mohamed, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72671
container_issue
container_start_page 72662
container_title IEEE access
container_volume 12
creator Rama Sree, S.
Laxmi Lydia, E.
Altaf Ahmed, Mohammed
Radhika, K.
Ishak, Mohamad Khairi
Ammar, Khalid
Fauzi Packeer Mohamed, Mohamed
description Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.
doi_str_mv 10.1109/ACCESS.2024.3403549
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10535511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535511</ieee_id><doaj_id>oai_doaj_org_article_5cf4c1772cf44502bb549f7949e03bcd</doaj_id><sourcerecordid>3061458680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</originalsourceid><addsrcrecordid>eNpNUcFuGyEQXVWt1CjJF7QHpJzXhQWW3ePKTV1LjhIprXJELAwuzhpcwKn89yXZKMocZkbDvDczvKr6QvCCENx_G5bL6_v7RYMbtqAMU876D9VZQ9q-ppy2H9_ln6vLlHa4WFdKXJxVT2ufYZrcFnxGN8cpu3oVw_GAblR0HtBdBKNyiGiYtiG6_GePHopH3wEOaAMqeue3aEjJpQwGDT7s1XQqzxl0dsEj59EdGEg5OuXRg5oe_6lTuqg-WTUluHyN59XvH9e_lj_rze1qvRw2taa8zzVrFGmsHntKueqEUtz0lFDRtS03jAnAajSCc9FoTnXX0oYb3RpsBYHRWkHPq_XMa4LayUN0exVPMignXwohbqWK2ekJJNeWaSIKlWWM42Ycy0da0bMeMB21KVxXM9chhr_HcpHchWP0ZX1JcUsY79oOly46d-kYUopg36YSLJ_1krNe8lkv-apXQX2dUQ4A3iE45ZwQ-h_z25IC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458680</pqid></control><display><type>article</type><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</creator><creatorcontrib>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</creatorcontrib><description>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403549</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Computer vision ; Data science ; Deep learning ; Feature extraction ; intelligent computing ; Logic gates ; Long short term memory ; Machine learning ; Pedestrian bridges ; Pedestrians ; Predators ; Security ; Surveillance ; Urban environments ; Walkways</subject><ispartof>IEEE access, 2024, Vol.12, p.72662-72671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</cites><orcidid>0000-0002-3554-0061 ; 0000-0003-0039-9018 ; 0000-0001-6353-0285 ; 0000-0003-0355-7835 ; 0000-0003-1723-9977 ; 0000-0003-3507-5363 ; 0000-0003-1751-481X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Rama Sree, S.</creatorcontrib><creatorcontrib>Laxmi Lydia, E.</creatorcontrib><creatorcontrib>Altaf Ahmed, Mohammed</creatorcontrib><creatorcontrib>Radhika, K.</creatorcontrib><creatorcontrib>Ishak, Mohamad Khairi</creatorcontrib><creatorcontrib>Ammar, Khalid</creatorcontrib><creatorcontrib>Fauzi Packeer Mohamed, Mohamed</creatorcontrib><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><title>IEEE access</title><addtitle>Access</addtitle><description>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Data science</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>intelligent computing</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Pedestrian bridges</subject><subject>Pedestrians</subject><subject>Predators</subject><subject>Security</subject><subject>Surveillance</subject><subject>Urban environments</subject><subject>Walkways</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuGyEQXVWt1CjJF7QHpJzXhQWW3ePKTV1LjhIprXJELAwuzhpcwKn89yXZKMocZkbDvDczvKr6QvCCENx_G5bL6_v7RYMbtqAMU876D9VZQ9q-ppy2H9_ln6vLlHa4WFdKXJxVT2ufYZrcFnxGN8cpu3oVw_GAblR0HtBdBKNyiGiYtiG6_GePHopH3wEOaAMqeue3aEjJpQwGDT7s1XQqzxl0dsEj59EdGEg5OuXRg5oe_6lTuqg-WTUluHyN59XvH9e_lj_rze1qvRw2taa8zzVrFGmsHntKueqEUtz0lFDRtS03jAnAajSCc9FoTnXX0oYb3RpsBYHRWkHPq_XMa4LayUN0exVPMignXwohbqWK2ekJJNeWaSIKlWWM42Ycy0da0bMeMB21KVxXM9chhr_HcpHchWP0ZX1JcUsY79oOly46d-kYUopg36YSLJ_1krNe8lkv-apXQX2dUQ4A3iE45ZwQ-h_z25IC</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rama Sree, S.</creator><creator>Laxmi Lydia, E.</creator><creator>Altaf Ahmed, Mohammed</creator><creator>Radhika, K.</creator><creator>Ishak, Mohamad Khairi</creator><creator>Ammar, Khalid</creator><creator>Fauzi Packeer Mohamed, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3554-0061</orcidid><orcidid>https://orcid.org/0000-0003-0039-9018</orcidid><orcidid>https://orcid.org/0000-0001-6353-0285</orcidid><orcidid>https://orcid.org/0000-0003-0355-7835</orcidid><orcidid>https://orcid.org/0000-0003-1723-9977</orcidid><orcidid>https://orcid.org/0000-0003-3507-5363</orcidid><orcidid>https://orcid.org/0000-0003-1751-481X</orcidid></search><sort><creationdate>2024</creationdate><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><author>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Data science</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>intelligent computing</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Pedestrian bridges</topic><topic>Pedestrians</topic><topic>Predators</topic><topic>Security</topic><topic>Surveillance</topic><topic>Urban environments</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rama Sree, S.</creatorcontrib><creatorcontrib>Laxmi Lydia, E.</creatorcontrib><creatorcontrib>Altaf Ahmed, Mohammed</creatorcontrib><creatorcontrib>Radhika, K.</creatorcontrib><creatorcontrib>Ishak, Mohamad Khairi</creatorcontrib><creatorcontrib>Ammar, Khalid</creatorcontrib><creatorcontrib>Fauzi Packeer Mohamed, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rama Sree, S.</au><au>Laxmi Lydia, E.</au><au>Altaf Ahmed, Mohammed</au><au>Radhika, K.</au><au>Ishak, Mohamad Khairi</au><au>Ammar, Khalid</au><au>Fauzi Packeer Mohamed, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>72662</spage><epage>72671</epage><pages>72662-72671</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403549</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3554-0061</orcidid><orcidid>https://orcid.org/0000-0003-0039-9018</orcidid><orcidid>https://orcid.org/0000-0001-6353-0285</orcidid><orcidid>https://orcid.org/0000-0003-0355-7835</orcidid><orcidid>https://orcid.org/0000-0003-1723-9977</orcidid><orcidid>https://orcid.org/0000-0003-3507-5363</orcidid><orcidid>https://orcid.org/0000-0003-1751-481X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.72662-72671
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10535511
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Anomalies
Anomaly detection
Artificial intelligence
Artificial neural networks
Computer architecture
Computer vision
Data science
Deep learning
Feature extraction
intelligent computing
Logic gates
Long short term memory
Machine learning
Pedestrian bridges
Pedestrians
Predators
Security
Surveillance
Urban environments
Walkways
title Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Multi-Group%20Marine%20Predator%20Algorithm%20With%20Deep%20Learning%20Assisted%20Anomaly%20Detection%20in%20Pedestrian%20Walkways&rft.jtitle=IEEE%20access&rft.au=Rama%20Sree,%20S.&rft.date=2024&rft.volume=12&rft.spage=72662&rft.epage=72671&rft.pages=72662-72671&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403549&rft_dat=%3Cproquest_ieee_%3E3061458680%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458680&rft_id=info:pmid/&rft_ieee_id=10535511&rft_doaj_id=oai_doaj_org_article_5cf4c1772cf44502bb549f7949e03bcd&rfr_iscdi=true