Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways
Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.72662-72671 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72671 |
---|---|
container_issue | |
container_start_page | 72662 |
container_title | IEEE access |
container_volume | 12 |
creator | Rama Sree, S. Laxmi Lydia, E. Altaf Ahmed, Mohammed Radhika, K. Ishak, Mohamad Khairi Ammar, Khalid Fauzi Packeer Mohamed, Mohamed |
description | Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods. |
doi_str_mv | 10.1109/ACCESS.2024.3403549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10535511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535511</ieee_id><doaj_id>oai_doaj_org_article_5cf4c1772cf44502bb549f7949e03bcd</doaj_id><sourcerecordid>3061458680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</originalsourceid><addsrcrecordid>eNpNUcFuGyEQXVWt1CjJF7QHpJzXhQWW3ePKTV1LjhIprXJELAwuzhpcwKn89yXZKMocZkbDvDczvKr6QvCCENx_G5bL6_v7RYMbtqAMU876D9VZQ9q-ppy2H9_ln6vLlHa4WFdKXJxVT2ufYZrcFnxGN8cpu3oVw_GAblR0HtBdBKNyiGiYtiG6_GePHopH3wEOaAMqeue3aEjJpQwGDT7s1XQqzxl0dsEj59EdGEg5OuXRg5oe_6lTuqg-WTUluHyN59XvH9e_lj_rze1qvRw2taa8zzVrFGmsHntKueqEUtz0lFDRtS03jAnAajSCc9FoTnXX0oYb3RpsBYHRWkHPq_XMa4LayUN0exVPMignXwohbqWK2ekJJNeWaSIKlWWM42Ycy0da0bMeMB21KVxXM9chhr_HcpHchWP0ZX1JcUsY79oOly46d-kYUopg36YSLJ_1krNe8lkv-apXQX2dUQ4A3iE45ZwQ-h_z25IC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458680</pqid></control><display><type>article</type><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</creator><creatorcontrib>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</creatorcontrib><description>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403549</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Computer vision ; Data science ; Deep learning ; Feature extraction ; intelligent computing ; Logic gates ; Long short term memory ; Machine learning ; Pedestrian bridges ; Pedestrians ; Predators ; Security ; Surveillance ; Urban environments ; Walkways</subject><ispartof>IEEE access, 2024, Vol.12, p.72662-72671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</cites><orcidid>0000-0002-3554-0061 ; 0000-0003-0039-9018 ; 0000-0001-6353-0285 ; 0000-0003-0355-7835 ; 0000-0003-1723-9977 ; 0000-0003-3507-5363 ; 0000-0003-1751-481X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Rama Sree, S.</creatorcontrib><creatorcontrib>Laxmi Lydia, E.</creatorcontrib><creatorcontrib>Altaf Ahmed, Mohammed</creatorcontrib><creatorcontrib>Radhika, K.</creatorcontrib><creatorcontrib>Ishak, Mohamad Khairi</creatorcontrib><creatorcontrib>Ammar, Khalid</creatorcontrib><creatorcontrib>Fauzi Packeer Mohamed, Mohamed</creatorcontrib><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><title>IEEE access</title><addtitle>Access</addtitle><description>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Data science</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>intelligent computing</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Pedestrian bridges</subject><subject>Pedestrians</subject><subject>Predators</subject><subject>Security</subject><subject>Surveillance</subject><subject>Urban environments</subject><subject>Walkways</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuGyEQXVWt1CjJF7QHpJzXhQWW3ePKTV1LjhIprXJELAwuzhpcwKn89yXZKMocZkbDvDczvKr6QvCCENx_G5bL6_v7RYMbtqAMU876D9VZQ9q-ppy2H9_ln6vLlHa4WFdKXJxVT2ufYZrcFnxGN8cpu3oVw_GAblR0HtBdBKNyiGiYtiG6_GePHopH3wEOaAMqeue3aEjJpQwGDT7s1XQqzxl0dsEj59EdGEg5OuXRg5oe_6lTuqg-WTUluHyN59XvH9e_lj_rze1qvRw2taa8zzVrFGmsHntKueqEUtz0lFDRtS03jAnAajSCc9FoTnXX0oYb3RpsBYHRWkHPq_XMa4LayUN0exVPMignXwohbqWK2ekJJNeWaSIKlWWM42Ycy0da0bMeMB21KVxXM9chhr_HcpHchWP0ZX1JcUsY79oOly46d-kYUopg36YSLJ_1krNe8lkv-apXQX2dUQ4A3iE45ZwQ-h_z25IC</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rama Sree, S.</creator><creator>Laxmi Lydia, E.</creator><creator>Altaf Ahmed, Mohammed</creator><creator>Radhika, K.</creator><creator>Ishak, Mohamad Khairi</creator><creator>Ammar, Khalid</creator><creator>Fauzi Packeer Mohamed, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3554-0061</orcidid><orcidid>https://orcid.org/0000-0003-0039-9018</orcidid><orcidid>https://orcid.org/0000-0001-6353-0285</orcidid><orcidid>https://orcid.org/0000-0003-0355-7835</orcidid><orcidid>https://orcid.org/0000-0003-1723-9977</orcidid><orcidid>https://orcid.org/0000-0003-3507-5363</orcidid><orcidid>https://orcid.org/0000-0003-1751-481X</orcidid></search><sort><creationdate>2024</creationdate><title>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</title><author>Rama Sree, S. ; Laxmi Lydia, E. ; Altaf Ahmed, Mohammed ; Radhika, K. ; Ishak, Mohamad Khairi ; Ammar, Khalid ; Fauzi Packeer Mohamed, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-42a12fcb9335a87aa5d931378665d447e0abd75572c53c86325dc6d0f71ebff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Data science</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>intelligent computing</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Pedestrian bridges</topic><topic>Pedestrians</topic><topic>Predators</topic><topic>Security</topic><topic>Surveillance</topic><topic>Urban environments</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rama Sree, S.</creatorcontrib><creatorcontrib>Laxmi Lydia, E.</creatorcontrib><creatorcontrib>Altaf Ahmed, Mohammed</creatorcontrib><creatorcontrib>Radhika, K.</creatorcontrib><creatorcontrib>Ishak, Mohamad Khairi</creatorcontrib><creatorcontrib>Ammar, Khalid</creatorcontrib><creatorcontrib>Fauzi Packeer Mohamed, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rama Sree, S.</au><au>Laxmi Lydia, E.</au><au>Altaf Ahmed, Mohammed</au><au>Radhika, K.</au><au>Ishak, Mohamad Khairi</au><au>Ammar, Khalid</au><au>Fauzi Packeer Mohamed, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>72662</spage><epage>72671</epage><pages>72662-72671</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring pedestrian activities from established norms. This kind of AD typically includes surveillance cameras, sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision (CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides, the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used for the hyperparameter tuning mechanism, which optimizes the model's performance, assuring accuracy and adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD approach over other DL methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403549</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3554-0061</orcidid><orcidid>https://orcid.org/0000-0003-0039-9018</orcidid><orcidid>https://orcid.org/0000-0001-6353-0285</orcidid><orcidid>https://orcid.org/0000-0003-0355-7835</orcidid><orcidid>https://orcid.org/0000-0003-1723-9977</orcidid><orcidid>https://orcid.org/0000-0003-3507-5363</orcidid><orcidid>https://orcid.org/0000-0003-1751-481X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.72662-72671 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10535511 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Anomalies Anomaly detection Artificial intelligence Artificial neural networks Computer architecture Computer vision Data science Deep learning Feature extraction intelligent computing Logic gates Long short term memory Machine learning Pedestrian bridges Pedestrians Predators Security Surveillance Urban environments Walkways |
title | Intelligent Multi-Group Marine Predator Algorithm With Deep Learning Assisted Anomaly Detection in Pedestrian Walkways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Multi-Group%20Marine%20Predator%20Algorithm%20With%20Deep%20Learning%20Assisted%20Anomaly%20Detection%20in%20Pedestrian%20Walkways&rft.jtitle=IEEE%20access&rft.au=Rama%20Sree,%20S.&rft.date=2024&rft.volume=12&rft.spage=72662&rft.epage=72671&rft.pages=72662-72671&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403549&rft_dat=%3Cproquest_ieee_%3E3061458680%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458680&rft_id=info:pmid/&rft_ieee_id=10535511&rft_doaj_id=oai_doaj_org_article_5cf4c1772cf44502bb549f7949e03bcd&rfr_iscdi=true |