A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing

The 5^{th} Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable computing resources. However, the deployment of service instances in MEC resources requires migration due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.72746-72765
Hauptverfasser: Islam, Safiqul, Ahammed, Mahadi, Siddique, Nura Alam, Roy, Palash, Razzaque, Md. Abdur, Hassan, Mohammad Mehedi, Saleem, Kashif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72765
container_issue
container_start_page 72746
container_title IEEE access
container_volume 12
creator Islam, Safiqul
Ahammed, Mahadi
Siddique, Nura Alam
Roy, Palash
Razzaque, Md. Abdur
Hassan, Mohammad Mehedi
Saleem, Kashif
description The 5^{th} Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable computing resources. However, the deployment of service instances in MEC resources requires migration due to user mobility. While Proactive Migration of service instances at multiple MECs increases users' Quality-of-Experience (QoE), Reactive Migration might reduce the deployment cost at the expense of user QoE. In this paper, we have developed a framework, that distributes service instances proactively among the Edge Nodes depending on user movement trajectories to ensure faster migration of the service instances and deliver higher QoE within minimum VNF deployment cost considering users' budgets. The aforementioned Proactive Service Placement (PSP) problem is formulated as a Multi-Objective Linear Programming (MOLP) that brings a trade-off between these two conflicting objectives, maximizing user QoE and lowering VNF deployment cost. For large networks, the PSP problem is proven to be an NP-hard problem. Thus, we have developed an artificial intelligence-based Hyper-heuristic algorithm for PSP, called HPSP, which can provide a high-performing solution within polynomial time. The HPSP exploits Tabu Search Optimization as a high-level meta-heuristic algorithm that selects one of the three lower-level meta-heuristic algorithms- Golden Eagle Optimizer, Sine Cosine Optimization, and Jellyfish Search Optimization depending on the situation. The results of numerical analysis describe that the HPSP system outperforms the other state-of-the-art works in terms of user QoE, cost, and the ratio of proactive to reactive service placements.
doi_str_mv 10.1109/ACCESS.2024.3403721
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10535489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535489</ieee_id><doaj_id>oai_doaj_org_article_aef1da23ae864d729fd859d61188de3d</doaj_id><sourcerecordid>3061459084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6613600701ce7b05038c3096409f21380cf45abecb20c313a8ccdab12a9df51c3</originalsourceid><addsrcrecordid>eNpNUU1v3CAUtKpWapTmF7QHpJ695cNgOFrWNhspVVttckYYHhtWXuNiu8n--5A6qvIuPEYz8-BNUXwmeEMIVt-att3u9xuKabVhFWY1Je-KC0qEKhln4v2b_mNxNU1HnEtmiNcXRWzQ7jxCKnewpDDNwaJmHFM09gH5mNDvxfRhPqPo0fYp8wIMFlDzaBKgPaS_Id9-9cbCCYYZ7e1DblAYEL9GP2IXekBbdwDUxtO4zGE4fCo-eNNPcPV6Xhb337d37a68_Xl90za3pWVczaUQhAmMa0ws1B3mmEnLsBIVVp4SJrH1FTcd2I5iywgz0lpnOkKNcp4Tyy6Lm9XXRXPUYwonk846mqD_ATEdtEn5tz1oA544Q5kBKSpXU-Wd5MoJQqR0wFz2-rp65b38WWCa9TEuacjP1wwLUnGFZZVZbGXZFKcpgf8_lWD9EpReg9IvQenXoLLqy6oKAPBGwRmvpGLPL8mOFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061459084</pqid></control><display><type>article</type><title>A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Islam, Safiqul ; Ahammed, Mahadi ; Siddique, Nura Alam ; Roy, Palash ; Razzaque, Md. Abdur ; Hassan, Mohammad Mehedi ; Saleem, Kashif</creator><creatorcontrib>Islam, Safiqul ; Ahammed, Mahadi ; Siddique, Nura Alam ; Roy, Palash ; Razzaque, Md. Abdur ; Hassan, Mohammad Mehedi ; Saleem, Kashif</creatorcontrib><description>The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5^{th} &lt;/tex-math&gt;&lt;/inline-formula&gt; Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable computing resources. However, the deployment of service instances in MEC resources requires migration due to user mobility. While Proactive Migration of service instances at multiple MECs increases users' Quality-of-Experience (QoE), Reactive Migration might reduce the deployment cost at the expense of user QoE. In this paper, we have developed a framework, that distributes service instances proactively among the Edge Nodes depending on user movement trajectories to ensure faster migration of the service instances and deliver higher QoE within minimum VNF deployment cost considering users' budgets. The aforementioned Proactive Service Placement (PSP) problem is formulated as a Multi-Objective Linear Programming (MOLP) that brings a trade-off between these two conflicting objectives, maximizing user QoE and lowering VNF deployment cost. For large networks, the PSP problem is proven to be an NP-hard problem. Thus, we have developed an artificial intelligence-based Hyper-heuristic algorithm for PSP, called HPSP, which can provide a high-performing solution within polynomial time. The HPSP exploits Tabu Search Optimization as a high-level meta-heuristic algorithm that selects one of the three lower-level meta-heuristic algorithms- Golden Eagle Optimizer, Sine Cosine Optimization, and Jellyfish Search Optimization depending on the situation. The results of numerical analysis describe that the HPSP system outperforms the other state-of-the-art works in terms of user QoE, cost, and the ratio of proactive to reactive service placements.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403721</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G mobile edge computing ; Algorithms ; Artificial intelligence ; Cloud computing ; Costs ; Delays ; deployment cost ; Edge computing ; Heuristic ; Heuristic algorithms ; Heuristic methods ; hyper-heuristic approach ; Linear programming ; Mobile computing ; Multi-access edge computing ; Numerical analysis ; Optimization ; Placement ; Polynomials ; Quality of Experience ; Real-time systems ; service instances ; Tabu search</subject><ispartof>IEEE access, 2024, Vol.12, p.72746-72765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-6613600701ce7b05038c3096409f21380cf45abecb20c313a8ccdab12a9df51c3</cites><orcidid>0000-0002-3479-3606 ; 0009-0007-2321-8423 ; 0000-0002-2000-0978 ; 0000-0002-2542-1923 ; 0009-0000-3827-0020 ; 0000-0002-1076-3090 ; 0000-0001-8062-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535489$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Islam, Safiqul</creatorcontrib><creatorcontrib>Ahammed, Mahadi</creatorcontrib><creatorcontrib>Siddique, Nura Alam</creatorcontrib><creatorcontrib>Roy, Palash</creatorcontrib><creatorcontrib>Razzaque, Md. Abdur</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><creatorcontrib>Saleem, Kashif</creatorcontrib><title>A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5^{th} &lt;/tex-math&gt;&lt;/inline-formula&gt; Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable computing resources. However, the deployment of service instances in MEC resources requires migration due to user mobility. While Proactive Migration of service instances at multiple MECs increases users' Quality-of-Experience (QoE), Reactive Migration might reduce the deployment cost at the expense of user QoE. In this paper, we have developed a framework, that distributes service instances proactively among the Edge Nodes depending on user movement trajectories to ensure faster migration of the service instances and deliver higher QoE within minimum VNF deployment cost considering users' budgets. The aforementioned Proactive Service Placement (PSP) problem is formulated as a Multi-Objective Linear Programming (MOLP) that brings a trade-off between these two conflicting objectives, maximizing user QoE and lowering VNF deployment cost. For large networks, the PSP problem is proven to be an NP-hard problem. Thus, we have developed an artificial intelligence-based Hyper-heuristic algorithm for PSP, called HPSP, which can provide a high-performing solution within polynomial time. The HPSP exploits Tabu Search Optimization as a high-level meta-heuristic algorithm that selects one of the three lower-level meta-heuristic algorithms- Golden Eagle Optimizer, Sine Cosine Optimization, and Jellyfish Search Optimization depending on the situation. The results of numerical analysis describe that the HPSP system outperforms the other state-of-the-art works in terms of user QoE, cost, and the ratio of proactive to reactive service placements.</description><subject>5G mobile communication</subject><subject>5G mobile edge computing</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>Delays</subject><subject>deployment cost</subject><subject>Edge computing</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>hyper-heuristic approach</subject><subject>Linear programming</subject><subject>Mobile computing</subject><subject>Multi-access edge computing</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Placement</subject><subject>Polynomials</subject><subject>Quality of Experience</subject><subject>Real-time systems</subject><subject>service instances</subject><subject>Tabu search</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v3CAUtKpWapTmF7QHpJ695cNgOFrWNhspVVttckYYHhtWXuNiu8n--5A6qvIuPEYz8-BNUXwmeEMIVt-att3u9xuKabVhFWY1Je-KC0qEKhln4v2b_mNxNU1HnEtmiNcXRWzQ7jxCKnewpDDNwaJmHFM09gH5mNDvxfRhPqPo0fYp8wIMFlDzaBKgPaS_Id9-9cbCCYYZ7e1DblAYEL9GP2IXekBbdwDUxtO4zGE4fCo-eNNPcPV6Xhb337d37a68_Xl90za3pWVczaUQhAmMa0ws1B3mmEnLsBIVVp4SJrH1FTcd2I5iywgz0lpnOkKNcp4Tyy6Lm9XXRXPUYwonk846mqD_ATEdtEn5tz1oA544Q5kBKSpXU-Wd5MoJQqR0wFz2-rp65b38WWCa9TEuacjP1wwLUnGFZZVZbGXZFKcpgf8_lWD9EpReg9IvQenXoLLqy6oKAPBGwRmvpGLPL8mOFg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Islam, Safiqul</creator><creator>Ahammed, Mahadi</creator><creator>Siddique, Nura Alam</creator><creator>Roy, Palash</creator><creator>Razzaque, Md. Abdur</creator><creator>Hassan, Mohammad Mehedi</creator><creator>Saleem, Kashif</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid><orcidid>https://orcid.org/0009-0007-2321-8423</orcidid><orcidid>https://orcid.org/0000-0002-2000-0978</orcidid><orcidid>https://orcid.org/0000-0002-2542-1923</orcidid><orcidid>https://orcid.org/0009-0000-3827-0020</orcidid><orcidid>https://orcid.org/0000-0002-1076-3090</orcidid><orcidid>https://orcid.org/0000-0001-8062-3301</orcidid></search><sort><creationdate>2024</creationdate><title>A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing</title><author>Islam, Safiqul ; Ahammed, Mahadi ; Siddique, Nura Alam ; Roy, Palash ; Razzaque, Md. Abdur ; Hassan, Mohammad Mehedi ; Saleem, Kashif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6613600701ce7b05038c3096409f21380cf45abecb20c313a8ccdab12a9df51c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>5G mobile edge computing</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>Delays</topic><topic>deployment cost</topic><topic>Edge computing</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>hyper-heuristic approach</topic><topic>Linear programming</topic><topic>Mobile computing</topic><topic>Multi-access edge computing</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Placement</topic><topic>Polynomials</topic><topic>Quality of Experience</topic><topic>Real-time systems</topic><topic>service instances</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Safiqul</creatorcontrib><creatorcontrib>Ahammed, Mahadi</creatorcontrib><creatorcontrib>Siddique, Nura Alam</creatorcontrib><creatorcontrib>Roy, Palash</creatorcontrib><creatorcontrib>Razzaque, Md. Abdur</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><creatorcontrib>Saleem, Kashif</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Safiqul</au><au>Ahammed, Mahadi</au><au>Siddique, Nura Alam</au><au>Roy, Palash</au><au>Razzaque, Md. Abdur</au><au>Hassan, Mohammad Mehedi</au><au>Saleem, Kashif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>72746</spage><epage>72765</epage><pages>72746-72765</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5^{th} &lt;/tex-math&gt;&lt;/inline-formula&gt; Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable computing resources. However, the deployment of service instances in MEC resources requires migration due to user mobility. While Proactive Migration of service instances at multiple MECs increases users' Quality-of-Experience (QoE), Reactive Migration might reduce the deployment cost at the expense of user QoE. In this paper, we have developed a framework, that distributes service instances proactively among the Edge Nodes depending on user movement trajectories to ensure faster migration of the service instances and deliver higher QoE within minimum VNF deployment cost considering users' budgets. The aforementioned Proactive Service Placement (PSP) problem is formulated as a Multi-Objective Linear Programming (MOLP) that brings a trade-off between these two conflicting objectives, maximizing user QoE and lowering VNF deployment cost. For large networks, the PSP problem is proven to be an NP-hard problem. Thus, we have developed an artificial intelligence-based Hyper-heuristic algorithm for PSP, called HPSP, which can provide a high-performing solution within polynomial time. The HPSP exploits Tabu Search Optimization as a high-level meta-heuristic algorithm that selects one of the three lower-level meta-heuristic algorithms- Golden Eagle Optimizer, Sine Cosine Optimization, and Jellyfish Search Optimization depending on the situation. The results of numerical analysis describe that the HPSP system outperforms the other state-of-the-art works in terms of user QoE, cost, and the ratio of proactive to reactive service placements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403721</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid><orcidid>https://orcid.org/0009-0007-2321-8423</orcidid><orcidid>https://orcid.org/0000-0002-2000-0978</orcidid><orcidid>https://orcid.org/0000-0002-2542-1923</orcidid><orcidid>https://orcid.org/0009-0000-3827-0020</orcidid><orcidid>https://orcid.org/0000-0002-1076-3090</orcidid><orcidid>https://orcid.org/0000-0001-8062-3301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.72746-72765
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10535489
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G mobile communication
5G mobile edge computing
Algorithms
Artificial intelligence
Cloud computing
Costs
Delays
deployment cost
Edge computing
Heuristic
Heuristic algorithms
Heuristic methods
hyper-heuristic approach
Linear programming
Mobile computing
Multi-access edge computing
Numerical analysis
Optimization
Placement
Polynomials
Quality of Experience
Real-time systems
service instances
Tabu search
title A Hyper-Heuristic Approach for Quality of Experience Aware Service Placement Scheme in 5G Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hyper-Heuristic%20Approach%20for%20Quality%20of%20Experience%20Aware%20Service%20Placement%20Scheme%20in%205G%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Islam,%20Safiqul&rft.date=2024&rft.volume=12&rft.spage=72746&rft.epage=72765&rft.pages=72746-72765&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403721&rft_dat=%3Cproquest_ieee_%3E3061459084%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061459084&rft_id=info:pmid/&rft_ieee_id=10535489&rft_doaj_id=oai_doaj_org_article_aef1da23ae864d729fd859d61188de3d&rfr_iscdi=true