Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems

It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-08, Vol.13 (8), p.2100-2104
Hauptverfasser: Ye, Junjie, Huang, Lei, Chen, Zhen, Zhang, Peichang, Rihan, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2104
container_issue 8
container_start_page 2100
container_title IEEE wireless communications letters
container_volume 13
creator Ye, Junjie
Huang, Lei
Chen, Zhen
Zhang, Peichang
Rihan, Mohamed
description It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.
doi_str_mv 10.1109/LWC.2024.3402235
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10533223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10533223</ieee_id><sourcerecordid>3090984063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</originalsourceid><addsrcrecordid>eNpNkMtLw0AQxhdRsNTePXhY8Jy672SPNb4qAcFaPC5JdlK2mKTuJkL_e7e0iHOZ1_fNwA-ha0rmlBJ9V3zmc0aYmHNBGOPyDE0YVSxhXMjzv5qnl2gWwpbEUIQymk1Qse7CuAP_4wJYXEDpO9dtcNN7_Nq7bsD3ULaxaw_TBwhu02HX4fflKlk4Gy3L1SLHq30YoA1X6KIpvwLMTnmK1k-PH_lLUrw9L_NFkdRMyCGxTKlKVI3IUkXSknJqaUOllRoYpKwWolaZbqiwtZVcNJrrSqQKSFbZ0oLgU3R7vLvz_fcIYTDbfvRdfGk40URngigeVeSoqn0fgofG7LxrS783lJgDNhOxmQM2c8IWLTdHiwOAf3LJedzzX22mZt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090984063</pqid></control><display><type>article</type><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</creator><creatorcontrib>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</creatorcontrib><description>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3402235</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Array signal processing ; Beamforming ; beamforming design ; Communication channels ; Complexity ; Correlation ; Heuristic methods ; Image enhancement ; ISAC ; Iterative algorithms ; lightweight network ; Machine learning ; Neural networks ; Performance measurement ; Reconfigurable intelligent surfaces ; RIS ; Sensors ; Signal to noise ratio ; Unsupervised learning</subject><ispartof>IEEE wireless communications letters, 2024-08, Vol.13 (8), p.2100-2104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</cites><orcidid>0000-0003-1953-2691 ; 0000-0001-8018-9103 ; 0000-0003-4534-7625 ; 0000-0002-5772-8428 ; 0000-0003-4030-2559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10533223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10533223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Junjie</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Zhang, Peichang</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</description><subject>Array signal processing</subject><subject>Beamforming</subject><subject>beamforming design</subject><subject>Communication channels</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Heuristic methods</subject><subject>Image enhancement</subject><subject>ISAC</subject><subject>Iterative algorithms</subject><subject>lightweight network</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance measurement</subject><subject>Reconfigurable intelligent surfaces</subject><subject>RIS</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Unsupervised learning</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtLw0AQxhdRsNTePXhY8Jy672SPNb4qAcFaPC5JdlK2mKTuJkL_e7e0iHOZ1_fNwA-ha0rmlBJ9V3zmc0aYmHNBGOPyDE0YVSxhXMjzv5qnl2gWwpbEUIQymk1Qse7CuAP_4wJYXEDpO9dtcNN7_Nq7bsD3ULaxaw_TBwhu02HX4fflKlk4Gy3L1SLHq30YoA1X6KIpvwLMTnmK1k-PH_lLUrw9L_NFkdRMyCGxTKlKVI3IUkXSknJqaUOllRoYpKwWolaZbqiwtZVcNJrrSqQKSFbZ0oLgU3R7vLvz_fcIYTDbfvRdfGk40URngigeVeSoqn0fgofG7LxrS783lJgDNhOxmQM2c8IWLTdHiwOAf3LJedzzX22mZt4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Ye, Junjie</creator><creator>Huang, Lei</creator><creator>Chen, Zhen</creator><creator>Zhang, Peichang</creator><creator>Rihan, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1953-2691</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-5772-8428</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid></search><sort><creationdate>20240801</creationdate><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><author>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Array signal processing</topic><topic>Beamforming</topic><topic>beamforming design</topic><topic>Communication channels</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Heuristic methods</topic><topic>Image enhancement</topic><topic>ISAC</topic><topic>Iterative algorithms</topic><topic>lightweight network</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance measurement</topic><topic>Reconfigurable intelligent surfaces</topic><topic>RIS</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Junjie</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Zhang, Peichang</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Junjie</au><au>Huang, Lei</au><au>Chen, Zhen</au><au>Zhang, Peichang</au><au>Rihan, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>2100</spage><epage>2104</epage><pages>2100-2104</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3402235</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1953-2691</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-5772-8428</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2024-08, Vol.13 (8), p.2100-2104
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_10533223
source IEEE Electronic Library (IEL)
subjects Array signal processing
Beamforming
beamforming design
Communication channels
Complexity
Correlation
Heuristic methods
Image enhancement
ISAC
Iterative algorithms
lightweight network
Machine learning
Neural networks
Performance measurement
Reconfigurable intelligent surfaces
RIS
Sensors
Signal to noise ratio
Unsupervised learning
title Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Learning%20for%20Joint%20Beamforming%20Design%20in%20RIS-Aided%20ISAC%20Systems&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Ye,%20Junjie&rft.date=2024-08-01&rft.volume=13&rft.issue=8&rft.spage=2100&rft.epage=2104&rft.pages=2100-2104&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3402235&rft_dat=%3Cproquest_RIE%3E3090984063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090984063&rft_id=info:pmid/&rft_ieee_id=10533223&rfr_iscdi=true