Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems
It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterati...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-08, Vol.13 (8), p.2100-2104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2104 |
---|---|
container_issue | 8 |
container_start_page | 2100 |
container_title | IEEE wireless communications letters |
container_volume | 13 |
creator | Ye, Junjie Huang, Lei Chen, Zhen Zhang, Peichang Rihan, Mohamed |
description | It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity. |
doi_str_mv | 10.1109/LWC.2024.3402235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10533223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10533223</ieee_id><sourcerecordid>3090984063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</originalsourceid><addsrcrecordid>eNpNkMtLw0AQxhdRsNTePXhY8Jy672SPNb4qAcFaPC5JdlK2mKTuJkL_e7e0iHOZ1_fNwA-ha0rmlBJ9V3zmc0aYmHNBGOPyDE0YVSxhXMjzv5qnl2gWwpbEUIQymk1Qse7CuAP_4wJYXEDpO9dtcNN7_Nq7bsD3ULaxaw_TBwhu02HX4fflKlk4Gy3L1SLHq30YoA1X6KIpvwLMTnmK1k-PH_lLUrw9L_NFkdRMyCGxTKlKVI3IUkXSknJqaUOllRoYpKwWolaZbqiwtZVcNJrrSqQKSFbZ0oLgU3R7vLvz_fcIYTDbfvRdfGk40URngigeVeSoqn0fgofG7LxrS783lJgDNhOxmQM2c8IWLTdHiwOAf3LJedzzX22mZt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090984063</pqid></control><display><type>article</type><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</creator><creatorcontrib>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</creatorcontrib><description>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3402235</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Array signal processing ; Beamforming ; beamforming design ; Communication channels ; Complexity ; Correlation ; Heuristic methods ; Image enhancement ; ISAC ; Iterative algorithms ; lightweight network ; Machine learning ; Neural networks ; Performance measurement ; Reconfigurable intelligent surfaces ; RIS ; Sensors ; Signal to noise ratio ; Unsupervised learning</subject><ispartof>IEEE wireless communications letters, 2024-08, Vol.13 (8), p.2100-2104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</cites><orcidid>0000-0003-1953-2691 ; 0000-0001-8018-9103 ; 0000-0003-4534-7625 ; 0000-0002-5772-8428 ; 0000-0003-4030-2559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10533223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10533223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Junjie</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Zhang, Peichang</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</description><subject>Array signal processing</subject><subject>Beamforming</subject><subject>beamforming design</subject><subject>Communication channels</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Heuristic methods</subject><subject>Image enhancement</subject><subject>ISAC</subject><subject>Iterative algorithms</subject><subject>lightweight network</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance measurement</subject><subject>Reconfigurable intelligent surfaces</subject><subject>RIS</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Unsupervised learning</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtLw0AQxhdRsNTePXhY8Jy672SPNb4qAcFaPC5JdlK2mKTuJkL_e7e0iHOZ1_fNwA-ha0rmlBJ9V3zmc0aYmHNBGOPyDE0YVSxhXMjzv5qnl2gWwpbEUIQymk1Qse7CuAP_4wJYXEDpO9dtcNN7_Nq7bsD3ULaxaw_TBwhu02HX4fflKlk4Gy3L1SLHq30YoA1X6KIpvwLMTnmK1k-PH_lLUrw9L_NFkdRMyCGxTKlKVI3IUkXSknJqaUOllRoYpKwWolaZbqiwtZVcNJrrSqQKSFbZ0oLgU3R7vLvz_fcIYTDbfvRdfGk40URngigeVeSoqn0fgofG7LxrS783lJgDNhOxmQM2c8IWLTdHiwOAf3LJedzzX22mZt4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Ye, Junjie</creator><creator>Huang, Lei</creator><creator>Chen, Zhen</creator><creator>Zhang, Peichang</creator><creator>Rihan, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1953-2691</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-5772-8428</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid></search><sort><creationdate>20240801</creationdate><title>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</title><author>Ye, Junjie ; Huang, Lei ; Chen, Zhen ; Zhang, Peichang ; Rihan, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d266b4bf487607a131d1f15d59e2e72c44c689f14dcd534f939b476e08bdade43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Array signal processing</topic><topic>Beamforming</topic><topic>beamforming design</topic><topic>Communication channels</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Heuristic methods</topic><topic>Image enhancement</topic><topic>ISAC</topic><topic>Iterative algorithms</topic><topic>lightweight network</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance measurement</topic><topic>Reconfigurable intelligent surfaces</topic><topic>RIS</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Junjie</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Zhang, Peichang</creatorcontrib><creatorcontrib>Rihan, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Junjie</au><au>Huang, Lei</au><au>Chen, Zhen</au><au>Zhang, Peichang</au><au>Rihan, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>2100</spage><epage>2104</epage><pages>2100-2104</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To simultaneously achieve both low complexity and high spectrum efficiency, lightweight structures are employed to develop an unsupervised learning-based beamforming design in this letter. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need for labeling. Simulations show that the proposed method achieves competitive performance compared to the benchmarks and significantly reduces the computational complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3402235</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1953-2691</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0003-4534-7625</orcidid><orcidid>https://orcid.org/0000-0002-5772-8428</orcidid><orcidid>https://orcid.org/0000-0003-4030-2559</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2024-08, Vol.13 (8), p.2100-2104 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_ieee_primary_10533223 |
source | IEEE Electronic Library (IEL) |
subjects | Array signal processing Beamforming beamforming design Communication channels Complexity Correlation Heuristic methods Image enhancement ISAC Iterative algorithms lightweight network Machine learning Neural networks Performance measurement Reconfigurable intelligent surfaces RIS Sensors Signal to noise ratio Unsupervised learning |
title | Unsupervised Learning for Joint Beamforming Design in RIS-Aided ISAC Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Learning%20for%20Joint%20Beamforming%20Design%20in%20RIS-Aided%20ISAC%20Systems&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Ye,%20Junjie&rft.date=2024-08-01&rft.volume=13&rft.issue=8&rft.spage=2100&rft.epage=2104&rft.pages=2100-2104&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3402235&rft_dat=%3Cproquest_RIE%3E3090984063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090984063&rft_id=info:pmid/&rft_ieee_id=10533223&rfr_iscdi=true |