DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation

Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-lab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: He, Qibin, Yan, Zhiyuan, Diao, Wenhui, Sun, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator He, Qibin
Yan, Zhiyuan
Diao, Wenhui
Sun, Xian
description Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .
doi_str_mv 10.1109/TGRS.2024.3402127
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10531727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531727</ieee_id><sourcerecordid>3069619646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd_gOAh4LnzvSRNG2_S6VQKwjbPIWsT6VibmXaH_fembAd5hy-893m_voTcI8wQQT2tF8vVjAETMy6AIcsuyATTNE9ACnFJJoBKJixX7Jrc9P0WAEWK2YR8zsvimc6PnWmbipa-72nhQ7DV0PiOOh9oEWIymfvWNB1d2tYPdnekK9v1to7y09puMCN9S66c2fX27qxT8v32ui7ek_Jr8VG8lEnFhBySjTLIJd9kWFUsdUYiilwYbgzk-QZqqF1dm5RlxnEFIFGgy12lWIw6xZpPyeNp7j7434PtB731h9DFlZqDVDJ-KmSk8ERV4_3BOr0PTWvCUSPo0TI9WqZHy_TZstjzcOpprLX_-JRjFst_2CBmtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069619646</pqid></control><display><type>article</type><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</creator><creatorcontrib>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</creatorcontrib><description>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3402127</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Competitiveness ; Cross-domain semantic segmentation ; Data models ; Geometric constraints ; high-order consistency ; Image segmentation ; Labels ; Noise ; Noise measurement ; noise transition matrix (NTM) ; Remote sensing ; Semantic segmentation ; Semantics ; smooth geometric constraint ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</cites><orcidid>0000-0002-0038-9816 ; 0000-0002-4264-6868 ; 0000-0002-3931-3974 ; 0000-0003-2158-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</description><subject>Adaptation models</subject><subject>Competitiveness</subject><subject>Cross-domain semantic segmentation</subject><subject>Data models</subject><subject>Geometric constraints</subject><subject>high-order consistency</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>noise transition matrix (NTM)</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>smooth geometric constraint</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd_gOAh4LnzvSRNG2_S6VQKwjbPIWsT6VibmXaH_fembAd5hy-893m_voTcI8wQQT2tF8vVjAETMy6AIcsuyATTNE9ACnFJJoBKJixX7Jrc9P0WAEWK2YR8zsvimc6PnWmbipa-72nhQ7DV0PiOOh9oEWIymfvWNB1d2tYPdnekK9v1to7y09puMCN9S66c2fX27qxT8v32ui7ek_Jr8VG8lEnFhBySjTLIJd9kWFUsdUYiilwYbgzk-QZqqF1dm5RlxnEFIFGgy12lWIw6xZpPyeNp7j7434PtB731h9DFlZqDVDJ-KmSk8ERV4_3BOr0PTWvCUSPo0TI9WqZHy_TZstjzcOpprLX_-JRjFst_2CBmtQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>He, Qibin</creator><creator>Yan, Zhiyuan</creator><creator>Diao, Wenhui</creator><creator>Sun, Xian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid></search><sort><creationdate>2024</creationdate><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><author>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Competitiveness</topic><topic>Cross-domain semantic segmentation</topic><topic>Data models</topic><topic>Geometric constraints</topic><topic>high-order consistency</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>noise transition matrix (NTM)</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>smooth geometric constraint</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Qibin</au><au>Yan, Zhiyuan</au><au>Diao, Wenhui</au><au>Sun, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3402127</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10531727
source IEEE Electronic Library (IEL)
subjects Adaptation models
Competitiveness
Cross-domain semantic segmentation
Data models
Geometric constraints
high-order consistency
Image segmentation
Labels
Noise
Noise measurement
noise transition matrix (NTM)
Remote sensing
Semantic segmentation
Semantics
smooth geometric constraint
Training
title DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DLC:%20Dynamic%20Loss%20Correction%20for%20Cross-Domain%20Remotely%20Sensed%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Qibin&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3402127&rft_dat=%3Cproquest_RIE%3E3069619646%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069619646&rft_id=info:pmid/&rft_ieee_id=10531727&rfr_iscdi=true