DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation
Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-lab...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | He, Qibin Yan, Zhiyuan Diao, Wenhui Sun, Xian |
description | Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc . |
doi_str_mv | 10.1109/TGRS.2024.3402127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10531727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531727</ieee_id><sourcerecordid>3069619646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd_gOAh4LnzvSRNG2_S6VQKwjbPIWsT6VibmXaH_fembAd5hy-893m_voTcI8wQQT2tF8vVjAETMy6AIcsuyATTNE9ACnFJJoBKJixX7Jrc9P0WAEWK2YR8zsvimc6PnWmbipa-72nhQ7DV0PiOOh9oEWIymfvWNB1d2tYPdnekK9v1to7y09puMCN9S66c2fX27qxT8v32ui7ek_Jr8VG8lEnFhBySjTLIJd9kWFUsdUYiilwYbgzk-QZqqF1dm5RlxnEFIFGgy12lWIw6xZpPyeNp7j7434PtB731h9DFlZqDVDJ-KmSk8ERV4_3BOr0PTWvCUSPo0TI9WqZHy_TZstjzcOpprLX_-JRjFst_2CBmtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069619646</pqid></control><display><type>article</type><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</creator><creatorcontrib>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</creatorcontrib><description>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3402127</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Competitiveness ; Cross-domain semantic segmentation ; Data models ; Geometric constraints ; high-order consistency ; Image segmentation ; Labels ; Noise ; Noise measurement ; noise transition matrix (NTM) ; Remote sensing ; Semantic segmentation ; Semantics ; smooth geometric constraint ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</cites><orcidid>0000-0002-0038-9816 ; 0000-0002-4264-6868 ; 0000-0002-3931-3974 ; 0000-0003-2158-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</description><subject>Adaptation models</subject><subject>Competitiveness</subject><subject>Cross-domain semantic segmentation</subject><subject>Data models</subject><subject>Geometric constraints</subject><subject>high-order consistency</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>noise transition matrix (NTM)</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>smooth geometric constraint</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd_gOAh4LnzvSRNG2_S6VQKwjbPIWsT6VibmXaH_fembAd5hy-893m_voTcI8wQQT2tF8vVjAETMy6AIcsuyATTNE9ACnFJJoBKJixX7Jrc9P0WAEWK2YR8zsvimc6PnWmbipa-72nhQ7DV0PiOOh9oEWIymfvWNB1d2tYPdnekK9v1to7y09puMCN9S66c2fX27qxT8v32ui7ek_Jr8VG8lEnFhBySjTLIJd9kWFUsdUYiilwYbgzk-QZqqF1dm5RlxnEFIFGgy12lWIw6xZpPyeNp7j7434PtB731h9DFlZqDVDJ-KmSk8ERV4_3BOr0PTWvCUSPo0TI9WqZHy_TZstjzcOpprLX_-JRjFst_2CBmtQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>He, Qibin</creator><creator>Yan, Zhiyuan</creator><creator>Diao, Wenhui</creator><creator>Sun, Xian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid></search><sort><creationdate>2024</creationdate><title>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</title><author>He, Qibin ; Yan, Zhiyuan ; Diao, Wenhui ; Sun, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-b9a1363b71cc25fa611484a3aa088b0d0dfdda527af39006141f8fc92929d51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Competitiveness</topic><topic>Cross-domain semantic segmentation</topic><topic>Data models</topic><topic>Geometric constraints</topic><topic>high-order consistency</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>noise transition matrix (NTM)</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>smooth geometric constraint</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Qibin</au><au>Yan, Zhiyuan</au><au>Diao, Wenhui</au><au>Sun, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to the diversity of acquisition conditions and imaging mechanisms in remote sensing, the generalization of semantic segmentation models trained with labeled data in the source domain to other unlabeled target domains is hindered. Existing mainstream self-training-based methods provide pseudo-labels to target data as ground truth to utilize target domain evidence for unsupervised domain adaptation (UDA). However, the label shift and domain gap between different domains inevitably introduce noise into pseudo-labeled target data, that is, misclassified pixels. As a consequence, we present a dynamic loss correction (DLC) framework for cross-domain semantic segmentation, which mitigates domain discrepancy by formally modeling the noise distribution of pseudo-labels in the target domain with noise transition matrix (NTM). Specifically, to promote the model output to fit the true label distribution, we employ the high-order consistency information of neighbor representations to estimate NTM and correct the supervision signal without heuristically setting anchors. Furthermore, smooth geometric constraints are introduced to regularize the mutual improvement of NTM derivation and segmentation model optimization in a data-driven manner, thereby compensating for the lack of target domain knowledge. Extensive experimental results on four cross-domain remotely sensed segmentation tasks highlight the generalization capability and competitiveness of the presented method, including cross-scene, cross-band, and cross-modal transfer. Our results and code are available at https://github.com/heqibin/dlc .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3402127</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10531727 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Competitiveness Cross-domain semantic segmentation Data models Geometric constraints high-order consistency Image segmentation Labels Noise Noise measurement noise transition matrix (NTM) Remote sensing Semantic segmentation Semantics smooth geometric constraint Training |
title | DLC: Dynamic Loss Correction for Cross-Domain Remotely Sensed Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DLC:%20Dynamic%20Loss%20Correction%20for%20Cross-Domain%20Remotely%20Sensed%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Qibin&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3402127&rft_dat=%3Cproquest_RIE%3E3069619646%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069619646&rft_id=info:pmid/&rft_ieee_id=10531727&rfr_iscdi=true |