Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter

To enhance the interactive stability between an LCL -type grid-connected inverter (GCI) and the grid, a passive damper (PD) is necessary for passivizing the output admittance of the GCI system since an active damper (AD) may not work in scenarios such as beyond the Nyquist frequency. This article ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2024-09, Vol.39 (9), p.11558-11570
Hauptverfasser: Ma, Guangda, Xie, Chuan, Li, Cheng, Peng, Chao, Zou, Jianxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11570
container_issue 9
container_start_page 11558
container_title IEEE transactions on power electronics
container_volume 39
creator Ma, Guangda
Xie, Chuan
Li, Cheng
Peng, Chao
Zou, Jianxiao
description To enhance the interactive stability between an LCL -type grid-connected inverter (GCI) and the grid, a passive damper (PD) is necessary for passivizing the output admittance of the GCI system since an active damper (AD) may not work in scenarios such as beyond the Nyquist frequency. This article explores the best installation locations of PD where higher efficiency can be obtained. To this end, a general admittance model of LCL -type GCI with an internal PD (IPD) or external PD (EPD) for different scenarios is derived. By leveraging the derived model, the passivity compensation burden is compared for IPD and EPD by analyzing the amplification and reduction characteristics of output admittance seen from the point of common coupling (PCC). Then, the EPD additivity conditions are figured out for different scenarios to guide the installation of the PD in the GCI system, which can fulfill full-frequency passive output admittance at the expense of relatively lower damping losses. Moreover, a design method for the EPD is also detailed in the article. Finally, GCI prototypes with high or low switching frequencies are tested in the laboratory and compared with state-of-the-art PD methods. The experimental results verify the effectiveness and superiority of the proposed EPD method.
doi_str_mv 10.1109/TPEL.2024.3402124
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10531651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531651</ieee_id><sourcerecordid>10_1109_TPEL_2024_3402124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-44c18d8c207a22ccd5440ac3faf6b856c88363927419aef26746e2e80af887b43</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqXwAUgM_gGX92wncUZIS6kUiQ6FNXKdZxTUJpUdVeTvSdUOTHc55w6HsUeEGSLkz5v1opxJkHqmNEiU-opNMNcoACG7ZhMwJhEmz9Utu4vxBwB1AjhhX2sbY3Ns-kG82kg1n1Nsvlveeb747Sm0dsfPCPG53R8ocN8FXhal2AwH4svQ1KLo2pZcP9qr9khh1O7Zjbe7SA-XnbLPt8WmeBflx3JVvJTCSTS90NqhqY2TkFkpnasTrcE65a1PtyZJnTEqVbnMNOaWvEwznZIkA9Ybk221mjI8_7rQxRjIV4fQ7G0YKoTqFKY6halOYapLmNF5OjsNEf3jE4VpguoPJB5eyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter</title><source>IEEE Xplore</source><creator>Ma, Guangda ; Xie, Chuan ; Li, Cheng ; Peng, Chao ; Zou, Jianxiao</creator><creatorcontrib>Ma, Guangda ; Xie, Chuan ; Li, Cheng ; Peng, Chao ; Zou, Jianxiao</creatorcontrib><description>To enhance the interactive stability between an LCL -type grid-connected inverter (GCI) and the grid, a passive damper (PD) is necessary for passivizing the output admittance of the GCI system since an active damper (AD) may not work in scenarios such as beyond the Nyquist frequency. This article explores the best installation locations of PD where higher efficiency can be obtained. To this end, a general admittance model of LCL -type GCI with an internal PD (IPD) or external PD (EPD) for different scenarios is derived. By leveraging the derived model, the passivity compensation burden is compared for IPD and EPD by analyzing the amplification and reduction characteristics of output admittance seen from the point of common coupling (PCC). Then, the EPD additivity conditions are figured out for different scenarios to guide the installation of the PD in the GCI system, which can fulfill full-frequency passive output admittance at the expense of relatively lower damping losses. Moreover, a design method for the EPD is also detailed in the article. Finally, GCI prototypes with high or low switching frequencies are tested in the laboratory and compared with state-of-the-art PD methods. The experimental results verify the effectiveness and superiority of the proposed EPD method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3402124</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Admittance ; Capacitors ; Damping ; Grid-connected inverter (GCI) ; passive damper (PD) ; passivity ; Power system stability ; Resonant frequency ; Shock absorbers ; stability ; Stability criteria</subject><ispartof>IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.11558-11570</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-44c18d8c207a22ccd5440ac3faf6b856c88363927419aef26746e2e80af887b43</cites><orcidid>0000-0002-0809-6495 ; 0009-0003-1094-0725 ; 0000-0002-8676-8322 ; 0000-0003-1150-1903 ; 0009-0002-9145-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Guangda</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Zou, Jianxiao</creatorcontrib><title>Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>To enhance the interactive stability between an LCL -type grid-connected inverter (GCI) and the grid, a passive damper (PD) is necessary for passivizing the output admittance of the GCI system since an active damper (AD) may not work in scenarios such as beyond the Nyquist frequency. This article explores the best installation locations of PD where higher efficiency can be obtained. To this end, a general admittance model of LCL -type GCI with an internal PD (IPD) or external PD (EPD) for different scenarios is derived. By leveraging the derived model, the passivity compensation burden is compared for IPD and EPD by analyzing the amplification and reduction characteristics of output admittance seen from the point of common coupling (PCC). Then, the EPD additivity conditions are figured out for different scenarios to guide the installation of the PD in the GCI system, which can fulfill full-frequency passive output admittance at the expense of relatively lower damping losses. Moreover, a design method for the EPD is also detailed in the article. Finally, GCI prototypes with high or low switching frequencies are tested in the laboratory and compared with state-of-the-art PD methods. The experimental results verify the effectiveness and superiority of the proposed EPD method.</description><subject>Admittance</subject><subject>Capacitors</subject><subject>Damping</subject><subject>Grid-connected inverter (GCI)</subject><subject>passive damper (PD)</subject><subject>passivity</subject><subject>Power system stability</subject><subject>Resonant frequency</subject><subject>Shock absorbers</subject><subject>stability</subject><subject>Stability criteria</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqXwAUgM_gGX92wncUZIS6kUiQ6FNXKdZxTUJpUdVeTvSdUOTHc55w6HsUeEGSLkz5v1opxJkHqmNEiU-opNMNcoACG7ZhMwJhEmz9Utu4vxBwB1AjhhX2sbY3Ns-kG82kg1n1Nsvlveeb747Sm0dsfPCPG53R8ocN8FXhal2AwH4svQ1KLo2pZcP9qr9khh1O7Zjbe7SA-XnbLPt8WmeBflx3JVvJTCSTS90NqhqY2TkFkpnasTrcE65a1PtyZJnTEqVbnMNOaWvEwznZIkA9Ybk221mjI8_7rQxRjIV4fQ7G0YKoTqFKY6halOYapLmNF5OjsNEf3jE4VpguoPJB5eyQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ma, Guangda</creator><creator>Xie, Chuan</creator><creator>Li, Cheng</creator><creator>Peng, Chao</creator><creator>Zou, Jianxiao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0809-6495</orcidid><orcidid>https://orcid.org/0009-0003-1094-0725</orcidid><orcidid>https://orcid.org/0000-0002-8676-8322</orcidid><orcidid>https://orcid.org/0000-0003-1150-1903</orcidid><orcidid>https://orcid.org/0009-0002-9145-5854</orcidid></search><sort><creationdate>20240901</creationdate><title>Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter</title><author>Ma, Guangda ; Xie, Chuan ; Li, Cheng ; Peng, Chao ; Zou, Jianxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-44c18d8c207a22ccd5440ac3faf6b856c88363927419aef26746e2e80af887b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Admittance</topic><topic>Capacitors</topic><topic>Damping</topic><topic>Grid-connected inverter (GCI)</topic><topic>passive damper (PD)</topic><topic>passivity</topic><topic>Power system stability</topic><topic>Resonant frequency</topic><topic>Shock absorbers</topic><topic>stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Guangda</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Zou, Jianxiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Guangda</au><au>Xie, Chuan</au><au>Li, Cheng</au><au>Peng, Chao</au><au>Zou, Jianxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>11558</spage><epage>11570</epage><pages>11558-11570</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>To enhance the interactive stability between an LCL -type grid-connected inverter (GCI) and the grid, a passive damper (PD) is necessary for passivizing the output admittance of the GCI system since an active damper (AD) may not work in scenarios such as beyond the Nyquist frequency. This article explores the best installation locations of PD where higher efficiency can be obtained. To this end, a general admittance model of LCL -type GCI with an internal PD (IPD) or external PD (EPD) for different scenarios is derived. By leveraging the derived model, the passivity compensation burden is compared for IPD and EPD by analyzing the amplification and reduction characteristics of output admittance seen from the point of common coupling (PCC). Then, the EPD additivity conditions are figured out for different scenarios to guide the installation of the PD in the GCI system, which can fulfill full-frequency passive output admittance at the expense of relatively lower damping losses. Moreover, a design method for the EPD is also detailed in the article. Finally, GCI prototypes with high or low switching frequencies are tested in the laboratory and compared with state-of-the-art PD methods. The experimental results verify the effectiveness and superiority of the proposed EPD method.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3402124</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0809-6495</orcidid><orcidid>https://orcid.org/0009-0003-1094-0725</orcidid><orcidid>https://orcid.org/0000-0002-8676-8322</orcidid><orcidid>https://orcid.org/0000-0003-1150-1903</orcidid><orcidid>https://orcid.org/0009-0002-9145-5854</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-09, Vol.39 (9), p.11558-11570
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10531651
source IEEE Xplore
subjects Admittance
Capacitors
Damping
Grid-connected inverter (GCI)
passive damper (PD)
passivity
Power system stability
Resonant frequency
Shock absorbers
stability
Stability criteria
title Passivity-Based Design of External Passive Damper for LCL-Type Grid-Connected Inverter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity-Based%20Design%20of%20External%20Passive%20Damper%20for%20LCL-Type%20Grid-Connected%20Inverter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Ma,%20Guangda&rft.date=2024-09-01&rft.volume=39&rft.issue=9&rft.spage=11558&rft.epage=11570&rft.pages=11558-11570&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3402124&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3402124%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10531651&rfr_iscdi=true