Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry

With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-19
Hauptverfasser: Du, Hao, Nan, Yang, Li, Weiqiang, Cardellach, Estel, Ribo, Serni, Rius, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Du, Hao
Nan, Yang
Li, Weiqiang
Cardellach, Estel
Ribo, Serni
Rius, Antonio
description With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.
doi_str_mv 10.1109/TGRS.2024.3398435
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10522774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522774</ieee_id><sourcerecordid>3058292237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoWnaDyh0IejaiaSRLGkZTOsa0gdxuhayLbcOiZXKziJ_H5tk0dVcmHOH4SD0SMmMUqLn63SVzxhhfAagFQdxhSZUCBWRmPNrNCFUxxFTmt2iu67bEEK5oHKC3hP_64Jre5z4XdG0tm98i32N068cZ1mGlxQn8wW2bTXEBOfNT2u3Ha59wOlHnuOVq7eu7P3O9eF4j27qYeseLnOKvl9f1slbtPxMs2SxjEoA2UeqsiWHulBQCQuEuqKKASwTiouCxFJIxWNwtqgKJ7mQUlsCWsZaERkLomGKns9398H_HVzXm40_hPExA0QophkDOVD0TJXBd11wtdmHZmfD0VBiRmtmtGZGa-Zibeg8nTuNc-4fLxiTksMJi3xkqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058292237</pqid></control><display><type>article</type><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</creator><creatorcontrib>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</creatorcontrib><description>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3398435</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autocorrelation ; Autocorrelation functions ; Bandwidth ; Codes ; Coherence ; Coherent combination ; Correlation coefficient ; Correlation coefficients ; Global navigation satellite system ; global navigation satellite system reflectometry (GNSS-R) ; Global Positioning System ; global positioning system (GPS) III ; Global positioning systems ; GPS ; L1C signal ; Navigation ; Navigational satellites ; ocean altimetry ; ocean scatterometry ; Positioning systems ; Reflectometry ; Satellite observation ; Satellites ; sea surface wind speed ; Signal processing ; Signal to noise ratio ; Spatial discrimination ; Spatial resolution ; Waveforms ; Wind measurement ; Wind speed ; Winds</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</citedby><cites>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</cites><orcidid>0000-0002-9101-4007 ; 0000-0002-9173-8355 ; 0000-0002-7567-5411 ; 0000-0001-8908-0972 ; 0000-0002-6215-7607 ; 0000-0002-5947-2649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522774$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4022,27921,27922,27923,54756</link.rule.ids></links><search><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Nan, Yang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Cardellach, Estel</creatorcontrib><creatorcontrib>Ribo, Serni</creatorcontrib><creatorcontrib>Rius, Antonio</creatorcontrib><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</description><subject>Autocorrelation</subject><subject>Autocorrelation functions</subject><subject>Bandwidth</subject><subject>Codes</subject><subject>Coherence</subject><subject>Coherent combination</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system reflectometry (GNSS-R)</subject><subject>Global Positioning System</subject><subject>global positioning system (GPS) III</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>L1C signal</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>ocean altimetry</subject><subject>ocean scatterometry</subject><subject>Positioning systems</subject><subject>Reflectometry</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>sea surface wind speed</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Waveforms</subject><subject>Wind measurement</subject><subject>Wind speed</subject><subject>Winds</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoWnaDyh0IejaiaSRLGkZTOsa0gdxuhayLbcOiZXKziJ_H5tk0dVcmHOH4SD0SMmMUqLn63SVzxhhfAagFQdxhSZUCBWRmPNrNCFUxxFTmt2iu67bEEK5oHKC3hP_64Jre5z4XdG0tm98i32N068cZ1mGlxQn8wW2bTXEBOfNT2u3Ha59wOlHnuOVq7eu7P3O9eF4j27qYeseLnOKvl9f1slbtPxMs2SxjEoA2UeqsiWHulBQCQuEuqKKASwTiouCxFJIxWNwtqgKJ7mQUlsCWsZaERkLomGKns9398H_HVzXm40_hPExA0QophkDOVD0TJXBd11wtdmHZmfD0VBiRmtmtGZGa-Zibeg8nTuNc-4fLxiTksMJi3xkqQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Du, Hao</creator><creator>Nan, Yang</creator><creator>Li, Weiqiang</creator><creator>Cardellach, Estel</creator><creator>Ribo, Serni</creator><creator>Rius, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9101-4007</orcidid><orcidid>https://orcid.org/0000-0002-9173-8355</orcidid><orcidid>https://orcid.org/0000-0002-7567-5411</orcidid><orcidid>https://orcid.org/0000-0001-8908-0972</orcidid><orcidid>https://orcid.org/0000-0002-6215-7607</orcidid><orcidid>https://orcid.org/0000-0002-5947-2649</orcidid></search><sort><creationdate>2024</creationdate><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><author>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autocorrelation</topic><topic>Autocorrelation functions</topic><topic>Bandwidth</topic><topic>Codes</topic><topic>Coherence</topic><topic>Coherent combination</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system reflectometry (GNSS-R)</topic><topic>Global Positioning System</topic><topic>global positioning system (GPS) III</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>L1C signal</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>ocean altimetry</topic><topic>ocean scatterometry</topic><topic>Positioning systems</topic><topic>Reflectometry</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>sea surface wind speed</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Waveforms</topic><topic>Wind measurement</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Nan, Yang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Cardellach, Estel</creatorcontrib><creatorcontrib>Ribo, Serni</creatorcontrib><creatorcontrib>Rius, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Hao</au><au>Nan, Yang</au><au>Li, Weiqiang</au><au>Cardellach, Estel</au><au>Ribo, Serni</au><au>Rius, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3398435</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9101-4007</orcidid><orcidid>https://orcid.org/0000-0002-9173-8355</orcidid><orcidid>https://orcid.org/0000-0002-7567-5411</orcidid><orcidid>https://orcid.org/0000-0001-8908-0972</orcidid><orcidid>https://orcid.org/0000-0002-6215-7607</orcidid><orcidid>https://orcid.org/0000-0002-5947-2649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10522774
source IEEE Electronic Library (IEL)
subjects Autocorrelation
Autocorrelation functions
Bandwidth
Codes
Coherence
Coherent combination
Correlation coefficient
Correlation coefficients
Global navigation satellite system
global navigation satellite system reflectometry (GNSS-R)
Global Positioning System
global positioning system (GPS) III
Global positioning systems
GPS
L1C signal
Navigation
Navigational satellites
ocean altimetry
ocean scatterometry
Positioning systems
Reflectometry
Satellite observation
Satellites
sea surface wind speed
Signal processing
Signal to noise ratio
Spatial discrimination
Spatial resolution
Waveforms
Wind measurement
Wind speed
Winds
title Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Combination%20of%20GPS%20III%20L1%20C/A%20and%20L1C%20Signals%20for%20GNSS%20Reflectometry&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Du,%20Hao&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3398435&rft_dat=%3Cproquest_ieee_%3E3058292237%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058292237&rft_id=info:pmid/&rft_ieee_id=10522774&rfr_iscdi=true