Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry
With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article propos...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-19 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Du, Hao Nan, Yang Li, Weiqiang Cardellach, Estel Ribo, Serni Rius, Antonio |
description | With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments. |
doi_str_mv | 10.1109/TGRS.2024.3398435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10522774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522774</ieee_id><sourcerecordid>3058292237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoWnaDyh0IejaiaSRLGkZTOsa0gdxuhayLbcOiZXKziJ_H5tk0dVcmHOH4SD0SMmMUqLn63SVzxhhfAagFQdxhSZUCBWRmPNrNCFUxxFTmt2iu67bEEK5oHKC3hP_64Jre5z4XdG0tm98i32N068cZ1mGlxQn8wW2bTXEBOfNT2u3Ha59wOlHnuOVq7eu7P3O9eF4j27qYeseLnOKvl9f1slbtPxMs2SxjEoA2UeqsiWHulBQCQuEuqKKASwTiouCxFJIxWNwtqgKJ7mQUlsCWsZaERkLomGKns9398H_HVzXm40_hPExA0QophkDOVD0TJXBd11wtdmHZmfD0VBiRmtmtGZGa-Zibeg8nTuNc-4fLxiTksMJi3xkqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058292237</pqid></control><display><type>article</type><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</creator><creatorcontrib>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</creatorcontrib><description>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3398435</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autocorrelation ; Autocorrelation functions ; Bandwidth ; Codes ; Coherence ; Coherent combination ; Correlation coefficient ; Correlation coefficients ; Global navigation satellite system ; global navigation satellite system reflectometry (GNSS-R) ; Global Positioning System ; global positioning system (GPS) III ; Global positioning systems ; GPS ; L1C signal ; Navigation ; Navigational satellites ; ocean altimetry ; ocean scatterometry ; Positioning systems ; Reflectometry ; Satellite observation ; Satellites ; sea surface wind speed ; Signal processing ; Signal to noise ratio ; Spatial discrimination ; Spatial resolution ; Waveforms ; Wind measurement ; Wind speed ; Winds</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</citedby><cites>FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</cites><orcidid>0000-0002-9101-4007 ; 0000-0002-9173-8355 ; 0000-0002-7567-5411 ; 0000-0001-8908-0972 ; 0000-0002-6215-7607 ; 0000-0002-5947-2649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522774$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4022,27921,27922,27923,54756</link.rule.ids></links><search><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Nan, Yang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Cardellach, Estel</creatorcontrib><creatorcontrib>Ribo, Serni</creatorcontrib><creatorcontrib>Rius, Antonio</creatorcontrib><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</description><subject>Autocorrelation</subject><subject>Autocorrelation functions</subject><subject>Bandwidth</subject><subject>Codes</subject><subject>Coherence</subject><subject>Coherent combination</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system reflectometry (GNSS-R)</subject><subject>Global Positioning System</subject><subject>global positioning system (GPS) III</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>L1C signal</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>ocean altimetry</subject><subject>ocean scatterometry</subject><subject>Positioning systems</subject><subject>Reflectometry</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>sea surface wind speed</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Waveforms</subject><subject>Wind measurement</subject><subject>Wind speed</subject><subject>Winds</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoWnaDyh0IejaiaSRLGkZTOsa0gdxuhayLbcOiZXKziJ_H5tk0dVcmHOH4SD0SMmMUqLn63SVzxhhfAagFQdxhSZUCBWRmPNrNCFUxxFTmt2iu67bEEK5oHKC3hP_64Jre5z4XdG0tm98i32N068cZ1mGlxQn8wW2bTXEBOfNT2u3Ha59wOlHnuOVq7eu7P3O9eF4j27qYeseLnOKvl9f1slbtPxMs2SxjEoA2UeqsiWHulBQCQuEuqKKASwTiouCxFJIxWNwtqgKJ7mQUlsCWsZaERkLomGKns9398H_HVzXm40_hPExA0QophkDOVD0TJXBd11wtdmHZmfD0VBiRmtmtGZGa-Zibeg8nTuNc-4fLxiTksMJi3xkqQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Du, Hao</creator><creator>Nan, Yang</creator><creator>Li, Weiqiang</creator><creator>Cardellach, Estel</creator><creator>Ribo, Serni</creator><creator>Rius, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9101-4007</orcidid><orcidid>https://orcid.org/0000-0002-9173-8355</orcidid><orcidid>https://orcid.org/0000-0002-7567-5411</orcidid><orcidid>https://orcid.org/0000-0001-8908-0972</orcidid><orcidid>https://orcid.org/0000-0002-6215-7607</orcidid><orcidid>https://orcid.org/0000-0002-5947-2649</orcidid></search><sort><creationdate>2024</creationdate><title>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</title><author>Du, Hao ; Nan, Yang ; Li, Weiqiang ; Cardellach, Estel ; Ribo, Serni ; Rius, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8dac43fb83d5a301ebd633a25845b067578463eabdbe745779a03976980765093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autocorrelation</topic><topic>Autocorrelation functions</topic><topic>Bandwidth</topic><topic>Codes</topic><topic>Coherence</topic><topic>Coherent combination</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system reflectometry (GNSS-R)</topic><topic>Global Positioning System</topic><topic>global positioning system (GPS) III</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>L1C signal</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>ocean altimetry</topic><topic>ocean scatterometry</topic><topic>Positioning systems</topic><topic>Reflectometry</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>sea surface wind speed</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Waveforms</topic><topic>Wind measurement</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Nan, Yang</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Cardellach, Estel</creatorcontrib><creatorcontrib>Ribo, Serni</creatorcontrib><creatorcontrib>Rius, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Hao</au><au>Nan, Yang</au><au>Li, Weiqiang</au><au>Cardellach, Estel</au><au>Ribo, Serni</au><au>Rius, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>With the evolution of global navigation satellite systems (GNSSs), more GNSS satellites and civilian signals are available for GNSS reflectometry (GNSS-R). Developments of new onboard processing strategies can improve the observation performance of spaceborne GNSS-R. To this end, this article proposes a new processing method by coherently combining reflected global positioning system (GPS) III level 1 (L1) C/A and L1C signals. By exploiting the additional signal component, the signal-to-noise ratio (SNR) of the reflected signal can be significantly improved. Moreover, by taking advantage of the narrower autocorrelation function of the combined signal, the spatial resolution and the performance of geophysical applications can be significantly improved. The proposed method has been validated by processing cyclone GNSS (CYGNSS) raw intermediate frequency data, including the direct and reflected signals from GPS III satellites. The results indicate that the SNR of the combined reflected waveform can be improved by ~2 dB compared to the L1 C/A waveform. Moreover, the SNR of the combined signal can be improved more efficiently using a longer coherent integration interval compared to the L1 C/A signal. Preliminary altimetric results demonstrate a 35.3%-61.6% improvement in the ranging standard deviation and a 22.4%-64.4% improvement in the median absolute deviation compared to L1 C/A measurements. In addition, the correlation coefficient between combined measurements and wind speed improves by 26.3% on average compared to L1 C/A measurements and 45.7% for high winds. This article presents a novel GNSS-R onboard signal processing method with improved performance, which can provide a reference for the design of future GNSS-R instruments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3398435</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9101-4007</orcidid><orcidid>https://orcid.org/0000-0002-9173-8355</orcidid><orcidid>https://orcid.org/0000-0002-7567-5411</orcidid><orcidid>https://orcid.org/0000-0001-8908-0972</orcidid><orcidid>https://orcid.org/0000-0002-6215-7607</orcidid><orcidid>https://orcid.org/0000-0002-5947-2649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10522774 |
source | IEEE Electronic Library (IEL) |
subjects | Autocorrelation Autocorrelation functions Bandwidth Codes Coherence Coherent combination Correlation coefficient Correlation coefficients Global navigation satellite system global navigation satellite system reflectometry (GNSS-R) Global Positioning System global positioning system (GPS) III Global positioning systems GPS L1C signal Navigation Navigational satellites ocean altimetry ocean scatterometry Positioning systems Reflectometry Satellite observation Satellites sea surface wind speed Signal processing Signal to noise ratio Spatial discrimination Spatial resolution Waveforms Wind measurement Wind speed Winds |
title | Coherent Combination of GPS III L1 C/A and L1C Signals for GNSS Reflectometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Combination%20of%20GPS%20III%20L1%20C/A%20and%20L1C%20Signals%20for%20GNSS%20Reflectometry&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Du,%20Hao&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3398435&rft_dat=%3Cproquest_ieee_%3E3058292237%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058292237&rft_id=info:pmid/&rft_ieee_id=10522774&rfr_iscdi=true |