Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI
Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-11, Vol.43 (11), p.3698-3709 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3709 |
---|---|
container_issue | 11 |
container_start_page | 3698 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Naughton, Noel Cahoon, Stacey M. Sutton, Bradley P. Georgiadis, John G. |
description | Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function. |
doi_str_mv | 10.1109/TMI.2024.3397790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10521631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521631</ieee_id><sourcerecordid>3051937828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EouVjZ0DIIwMpz3YcxyMqFCJRgaASbJHrvoAhTYqdDPx7XLUgprece_XuIeSEwYgx0JezaTHiwNOREFopDTtkyKTMEy7T110yBK7yBCDjA3IQwgcASyXofTIQuQIttR4SvLIWa_Smw8UFfXz_Ds6GpGjCynlc0KKp0GNjkbYVff6MZGdqOu2DrZFOnfVt6Hxvu94jnfh2Sa9dVfXBtU3ygu7tPbbS6VNxRPYqUwc83t5DMpvczMZ3yf3DbTG-uk-sYLJLUg7C8DnX2izmqMGmwOPDCq0SUqIBnEvDMp6JzAq0UqHgUjKtMg0iTcUhOd_Urnz71WPoyqULcV5tGmz7UAqIsFA5zyMKG3Q9IXisypV3S-O_Swbl2m0Z3ZZrt-XWbYycbdv7-RIXf4FfmRE43QAOEf_1Sc4ywcQPDg19DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051937828</pqid></control><display><type>article</type><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><source>IEEE Electronic Library (IEL)</source><creator>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</creator><creatorcontrib>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</creatorcontrib><description>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3397790</identifier><identifier>PMID: 38709599</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted MRI ; Extracellular ; Gaussian process ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; meta-model ; Microstructure ; Muscle, Skeletal - diagnostic imaging ; Muscle, Skeletal - physiology ; Muscles ; Numerical models ; Organizations ; Permeability ; skeletal muscle ; Tensors</subject><ispartof>IEEE transactions on medical imaging, 2024-11, Vol.43 (11), p.3698-3709</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</cites><orcidid>0000-0002-5553-4718 ; 0000-0002-8443-0408 ; 0000-0002-8217-2003 ; 0009-0007-5819-1136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naughton, Noel</creatorcontrib><creatorcontrib>Cahoon, Stacey M.</creatorcontrib><creatorcontrib>Sutton, Bradley P.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</description><subject>Algorithms</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted MRI</subject><subject>Extracellular</subject><subject>Gaussian process</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>meta-model</subject><subject>Microstructure</subject><subject>Muscle, Skeletal - diagnostic imaging</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Numerical models</subject><subject>Organizations</subject><subject>Permeability</subject><subject>skeletal muscle</subject><subject>Tensors</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAURS0EouVjZ0DIIwMpz3YcxyMqFCJRgaASbJHrvoAhTYqdDPx7XLUgprece_XuIeSEwYgx0JezaTHiwNOREFopDTtkyKTMEy7T110yBK7yBCDjA3IQwgcASyXofTIQuQIttR4SvLIWa_Smw8UFfXz_Ds6GpGjCynlc0KKp0GNjkbYVff6MZGdqOu2DrZFOnfVt6Hxvu94jnfh2Sa9dVfXBtU3ygu7tPbbS6VNxRPYqUwc83t5DMpvczMZ3yf3DbTG-uk-sYLJLUg7C8DnX2izmqMGmwOPDCq0SUqIBnEvDMp6JzAq0UqHgUjKtMg0iTcUhOd_Urnz71WPoyqULcV5tGmz7UAqIsFA5zyMKG3Q9IXisypV3S-O_Swbl2m0Z3ZZrt-XWbYycbdv7-RIXf4FfmRE43QAOEf_1Sc4ywcQPDg19DA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Naughton, Noel</creator><creator>Cahoon, Stacey M.</creator><creator>Sutton, Bradley P.</creator><creator>Georgiadis, John G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5553-4718</orcidid><orcidid>https://orcid.org/0000-0002-8443-0408</orcidid><orcidid>https://orcid.org/0000-0002-8217-2003</orcidid><orcidid>https://orcid.org/0009-0007-5819-1136</orcidid></search><sort><creationdate>20241101</creationdate><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><author>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted MRI</topic><topic>Extracellular</topic><topic>Gaussian process</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>meta-model</topic><topic>Microstructure</topic><topic>Muscle, Skeletal - diagnostic imaging</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Numerical models</topic><topic>Organizations</topic><topic>Permeability</topic><topic>skeletal muscle</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Naughton, Noel</creatorcontrib><creatorcontrib>Cahoon, Stacey M.</creatorcontrib><creatorcontrib>Sutton, Bradley P.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naughton, Noel</au><au>Cahoon, Stacey M.</au><au>Sutton, Bradley P.</au><au>Georgiadis, John G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>43</volume><issue>11</issue><spage>3698</spage><epage>3709</epage><pages>3698-3709</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38709599</pmid><doi>10.1109/TMI.2024.3397790</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5553-4718</orcidid><orcidid>https://orcid.org/0000-0002-8443-0408</orcidid><orcidid>https://orcid.org/0000-0002-8217-2003</orcidid><orcidid>https://orcid.org/0009-0007-5819-1136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-11, Vol.43 (11), p.3698-3709 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10521631 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Diffusion Magnetic Resonance Imaging - methods Diffusion-weighted MRI Extracellular Gaussian process Humans Image Processing, Computer-Assisted - methods Machine Learning meta-model Microstructure Muscle, Skeletal - diagnostic imaging Muscle, Skeletal - physiology Muscles Numerical models Organizations Permeability skeletal muscle Tensors |
title | Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated,%20Physics-Inspired%20Inference%20of%20Skeletal%20Muscle%20Microstructure%20From%20Diffusion-Weighted%20MRI&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Naughton,%20Noel&rft.date=2024-11-01&rft.volume=43&rft.issue=11&rft.spage=3698&rft.epage=3709&rft.pages=3698-3709&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3397790&rft_dat=%3Cproquest_RIE%3E3051937828%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051937828&rft_id=info:pmid/38709599&rft_ieee_id=10521631&rfr_iscdi=true |