Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI

Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-11, Vol.43 (11), p.3698-3709
Hauptverfasser: Naughton, Noel, Cahoon, Stacey M., Sutton, Bradley P., Georgiadis, John G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3709
container_issue 11
container_start_page 3698
container_title IEEE transactions on medical imaging
container_volume 43
creator Naughton, Noel
Cahoon, Stacey M.
Sutton, Bradley P.
Georgiadis, John G.
description Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.
doi_str_mv 10.1109/TMI.2024.3397790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10521631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521631</ieee_id><sourcerecordid>3051937828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EouVjZ0DIIwMpz3YcxyMqFCJRgaASbJHrvoAhTYqdDPx7XLUgprece_XuIeSEwYgx0JezaTHiwNOREFopDTtkyKTMEy7T110yBK7yBCDjA3IQwgcASyXofTIQuQIttR4SvLIWa_Smw8UFfXz_Ds6GpGjCynlc0KKp0GNjkbYVff6MZGdqOu2DrZFOnfVt6Hxvu94jnfh2Sa9dVfXBtU3ygu7tPbbS6VNxRPYqUwc83t5DMpvczMZ3yf3DbTG-uk-sYLJLUg7C8DnX2izmqMGmwOPDCq0SUqIBnEvDMp6JzAq0UqHgUjKtMg0iTcUhOd_Urnz71WPoyqULcV5tGmz7UAqIsFA5zyMKG3Q9IXisypV3S-O_Swbl2m0Z3ZZrt-XWbYycbdv7-RIXf4FfmRE43QAOEf_1Sc4ywcQPDg19DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051937828</pqid></control><display><type>article</type><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><source>IEEE Electronic Library (IEL)</source><creator>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</creator><creatorcontrib>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</creatorcontrib><description>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3397790</identifier><identifier>PMID: 38709599</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted MRI ; Extracellular ; Gaussian process ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; meta-model ; Microstructure ; Muscle, Skeletal - diagnostic imaging ; Muscle, Skeletal - physiology ; Muscles ; Numerical models ; Organizations ; Permeability ; skeletal muscle ; Tensors</subject><ispartof>IEEE transactions on medical imaging, 2024-11, Vol.43 (11), p.3698-3709</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</cites><orcidid>0000-0002-5553-4718 ; 0000-0002-8443-0408 ; 0000-0002-8217-2003 ; 0009-0007-5819-1136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naughton, Noel</creatorcontrib><creatorcontrib>Cahoon, Stacey M.</creatorcontrib><creatorcontrib>Sutton, Bradley P.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</description><subject>Algorithms</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted MRI</subject><subject>Extracellular</subject><subject>Gaussian process</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>meta-model</subject><subject>Microstructure</subject><subject>Muscle, Skeletal - diagnostic imaging</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Numerical models</subject><subject>Organizations</subject><subject>Permeability</subject><subject>skeletal muscle</subject><subject>Tensors</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAURS0EouVjZ0DIIwMpz3YcxyMqFCJRgaASbJHrvoAhTYqdDPx7XLUgprece_XuIeSEwYgx0JezaTHiwNOREFopDTtkyKTMEy7T110yBK7yBCDjA3IQwgcASyXofTIQuQIttR4SvLIWa_Smw8UFfXz_Ds6GpGjCynlc0KKp0GNjkbYVff6MZGdqOu2DrZFOnfVt6Hxvu94jnfh2Sa9dVfXBtU3ygu7tPbbS6VNxRPYqUwc83t5DMpvczMZ3yf3DbTG-uk-sYLJLUg7C8DnX2izmqMGmwOPDCq0SUqIBnEvDMp6JzAq0UqHgUjKtMg0iTcUhOd_Urnz71WPoyqULcV5tGmz7UAqIsFA5zyMKG3Q9IXisypV3S-O_Swbl2m0Z3ZZrt-XWbYycbdv7-RIXf4FfmRE43QAOEf_1Sc4ywcQPDg19DA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Naughton, Noel</creator><creator>Cahoon, Stacey M.</creator><creator>Sutton, Bradley P.</creator><creator>Georgiadis, John G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5553-4718</orcidid><orcidid>https://orcid.org/0000-0002-8443-0408</orcidid><orcidid>https://orcid.org/0000-0002-8217-2003</orcidid><orcidid>https://orcid.org/0009-0007-5819-1136</orcidid></search><sort><creationdate>20241101</creationdate><title>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</title><author>Naughton, Noel ; Cahoon, Stacey M. ; Sutton, Bradley P. ; Georgiadis, John G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4203a2b299adbe90c4025097ec7355ea0eb5a162636c3ec57e32551976903443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted MRI</topic><topic>Extracellular</topic><topic>Gaussian process</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>meta-model</topic><topic>Microstructure</topic><topic>Muscle, Skeletal - diagnostic imaging</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Numerical models</topic><topic>Organizations</topic><topic>Permeability</topic><topic>skeletal muscle</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Naughton, Noel</creatorcontrib><creatorcontrib>Cahoon, Stacey M.</creatorcontrib><creatorcontrib>Sutton, Bradley P.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naughton, Noel</au><au>Cahoon, Stacey M.</au><au>Sutton, Bradley P.</au><au>Georgiadis, John G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>43</volume><issue>11</issue><spage>3698</spage><epage>3709</epage><pages>3698-3709</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38709599</pmid><doi>10.1109/TMI.2024.3397790</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5553-4718</orcidid><orcidid>https://orcid.org/0000-0002-8443-0408</orcidid><orcidid>https://orcid.org/0000-0002-8217-2003</orcidid><orcidid>https://orcid.org/0009-0007-5819-1136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-11, Vol.43 (11), p.3698-3709
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_ieee_primary_10521631
source IEEE Electronic Library (IEL)
subjects Algorithms
Diffusion Magnetic Resonance Imaging - methods
Diffusion-weighted MRI
Extracellular
Gaussian process
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
meta-model
Microstructure
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiology
Muscles
Numerical models
Organizations
Permeability
skeletal muscle
Tensors
title Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated,%20Physics-Inspired%20Inference%20of%20Skeletal%20Muscle%20Microstructure%20From%20Diffusion-Weighted%20MRI&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Naughton,%20Noel&rft.date=2024-11-01&rft.volume=43&rft.issue=11&rft.spage=3698&rft.epage=3709&rft.pages=3698-3709&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3397790&rft_dat=%3Cproquest_RIE%3E3051937828%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051937828&rft_id=info:pmid/38709599&rft_ieee_id=10521631&rfr_iscdi=true