AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models

Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2024-11, Vol.38 (6), p.451-458
Hauptverfasser: Bakirtzis, Stefanos, Wassell, Ian, Fiore, Marco, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 6
container_start_page 451
container_title IEEE network
container_volume 38
creator Bakirtzis, Stefanos
Wassell, Ian
Fiore, Marco
Zhang, Jie
description Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.
doi_str_mv 10.1109/MNET.2024.3397801
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10521613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521613</ieee_id><sourcerecordid>10_1109_MNET_2024_3397801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-8c808fcd18d5552183fb22f26d96603c98dfff50d36fc5f9cf799a222484dcc63</originalsourceid><addsrcrecordid>eNpNkMtOAjEYhRujiYg-gImLvkDxbzst7ZIAIgkgC4zuJrUXrI5T0k40vr0QWLg6i3NLPoRuKQwoBX2_XE03AwasGnCuhwroGepRIRShQr6eox4oDURBVV2iq1I-AGglOOuh9WhORqXE0nmH561LKeOXmH3jS8Er3_2k_InXjWnb2G73TveOJ6YzZJLjt2_xOqed2ZouphYvk_NNuUYXwTTF35y0j54fppvxI1k8zebj0YJYJmlHlFWggnVUOSEEo4qHN8YCk05LCdxq5UIIAhyXwYqgbRhqbRhjlaqctZL3ET3u2pxKyT7Uuxy_TP6tKdQHJPUBSX1AUp-Q7Dt3x0703v_L7_8l5fwPPu1dtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><source>IEEE Electronic Library (IEL)</source><creator>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</creator><creatorcontrib>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</creatorcontrib><description>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3397801</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; Artificial intelligence ; Computational modeling ; Deep learning ; Measurement ; network planning ; Network topology ; Planning ; propagation modeling ; Training ; Ultra-dense networks ; Wireless networks</subject><ispartof>IEEE network, 2024-11, Vol.38 (6), p.451-458</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7927-5565 ; 0000-0002-0772-9967 ; 0000-0002-3354-0690 ; 0000-0002-7958-0495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><creatorcontrib>Fiore, Marco</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</description><subject>5G mobile communication</subject><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Measurement</subject><subject>network planning</subject><subject>Network topology</subject><subject>Planning</subject><subject>propagation modeling</subject><subject>Training</subject><subject>Ultra-dense networks</subject><subject>Wireless networks</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEYhRujiYg-gImLvkDxbzst7ZIAIgkgC4zuJrUXrI5T0k40vr0QWLg6i3NLPoRuKQwoBX2_XE03AwasGnCuhwroGepRIRShQr6eox4oDURBVV2iq1I-AGglOOuh9WhORqXE0nmH561LKeOXmH3jS8Er3_2k_InXjWnb2G73TveOJ6YzZJLjt2_xOqed2ZouphYvk_NNuUYXwTTF35y0j54fppvxI1k8zebj0YJYJmlHlFWggnVUOSEEo4qHN8YCk05LCdxq5UIIAhyXwYqgbRhqbRhjlaqctZL3ET3u2pxKyT7Uuxy_TP6tKdQHJPUBSX1AUp-Q7Dt3x0703v_L7_8l5fwPPu1dtA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Bakirtzis, Stefanos</creator><creator>Wassell, Ian</creator><creator>Fiore, Marco</creator><creator>Zhang, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-0772-9967</orcidid><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid></search><sort><creationdate>20241101</creationdate><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><author>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-8c808fcd18d5552183fb22f26d96603c98dfff50d36fc5f9cf799a222484dcc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Measurement</topic><topic>network planning</topic><topic>Network topology</topic><topic>Planning</topic><topic>propagation modeling</topic><topic>Training</topic><topic>Ultra-dense networks</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><creatorcontrib>Fiore, Marco</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bakirtzis, Stefanos</au><au>Wassell, Ian</au><au>Fiore, Marco</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>451</spage><epage>458</epage><pages>451-458</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3397801</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-0772-9967</orcidid><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2024-11, Vol.38 (6), p.451-458
issn 0890-8044
1558-156X
language eng
recordid cdi_ieee_primary_10521613
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Artificial intelligence
Computational modeling
Deep learning
Measurement
network planning
Network topology
Planning
propagation modeling
Training
Ultra-dense networks
Wireless networks
title AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20Indoor%20Wireless%20Network%20Planning%20With%20Data-Driven%20Propagation%20Models&rft.jtitle=IEEE%20network&rft.au=Bakirtzis,%20Stefanos&rft.date=2024-11-01&rft.volume=38&rft.issue=6&rft.spage=451&rft.epage=458&rft.pages=451-458&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3397801&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3397801%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10521613&rfr_iscdi=true