AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models
Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless...
Gespeichert in:
Veröffentlicht in: | IEEE network 2024-11, Vol.38 (6), p.451-458 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 6 |
container_start_page | 451 |
container_title | IEEE network |
container_volume | 38 |
creator | Bakirtzis, Stefanos Wassell, Ian Fiore, Marco Zhang, Jie |
description | Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance. |
doi_str_mv | 10.1109/MNET.2024.3397801 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10521613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521613</ieee_id><sourcerecordid>10_1109_MNET_2024_3397801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-8c808fcd18d5552183fb22f26d96603c98dfff50d36fc5f9cf799a222484dcc63</originalsourceid><addsrcrecordid>eNpNkMtOAjEYhRujiYg-gImLvkDxbzst7ZIAIgkgC4zuJrUXrI5T0k40vr0QWLg6i3NLPoRuKQwoBX2_XE03AwasGnCuhwroGepRIRShQr6eox4oDURBVV2iq1I-AGglOOuh9WhORqXE0nmH561LKeOXmH3jS8Er3_2k_InXjWnb2G73TveOJ6YzZJLjt2_xOqed2ZouphYvk_NNuUYXwTTF35y0j54fppvxI1k8zebj0YJYJmlHlFWggnVUOSEEo4qHN8YCk05LCdxq5UIIAhyXwYqgbRhqbRhjlaqctZL3ET3u2pxKyT7Uuxy_TP6tKdQHJPUBSX1AUp-Q7Dt3x0703v_L7_8l5fwPPu1dtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><source>IEEE Electronic Library (IEL)</source><creator>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</creator><creatorcontrib>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</creatorcontrib><description>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3397801</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; Artificial intelligence ; Computational modeling ; Deep learning ; Measurement ; network planning ; Network topology ; Planning ; propagation modeling ; Training ; Ultra-dense networks ; Wireless networks</subject><ispartof>IEEE network, 2024-11, Vol.38 (6), p.451-458</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7927-5565 ; 0000-0002-0772-9967 ; 0000-0002-3354-0690 ; 0000-0002-7958-0495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><creatorcontrib>Fiore, Marco</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</description><subject>5G mobile communication</subject><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Measurement</subject><subject>network planning</subject><subject>Network topology</subject><subject>Planning</subject><subject>propagation modeling</subject><subject>Training</subject><subject>Ultra-dense networks</subject><subject>Wireless networks</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEYhRujiYg-gImLvkDxbzst7ZIAIgkgC4zuJrUXrI5T0k40vr0QWLg6i3NLPoRuKQwoBX2_XE03AwasGnCuhwroGepRIRShQr6eox4oDURBVV2iq1I-AGglOOuh9WhORqXE0nmH561LKeOXmH3jS8Er3_2k_InXjWnb2G73TveOJ6YzZJLjt2_xOqed2ZouphYvk_NNuUYXwTTF35y0j54fppvxI1k8zebj0YJYJmlHlFWggnVUOSEEo4qHN8YCk05LCdxq5UIIAhyXwYqgbRhqbRhjlaqctZL3ET3u2pxKyT7Uuxy_TP6tKdQHJPUBSX1AUp-Q7Dt3x0703v_L7_8l5fwPPu1dtA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Bakirtzis, Stefanos</creator><creator>Wassell, Ian</creator><creator>Fiore, Marco</creator><creator>Zhang, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-0772-9967</orcidid><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid></search><sort><creationdate>20241101</creationdate><title>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</title><author>Bakirtzis, Stefanos ; Wassell, Ian ; Fiore, Marco ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-8c808fcd18d5552183fb22f26d96603c98dfff50d36fc5f9cf799a222484dcc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Measurement</topic><topic>network planning</topic><topic>Network topology</topic><topic>Planning</topic><topic>propagation modeling</topic><topic>Training</topic><topic>Ultra-dense networks</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><creatorcontrib>Fiore, Marco</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bakirtzis, Stefanos</au><au>Wassell, Ian</au><au>Fiore, Marco</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>451</spage><epage>458</epage><pages>451-458</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Propelled by rapid advances in artificial intelligence (AI), the design and operation of 5G and beyond networks are anticipated to be radically different from those of legacy communication systems. Indeed, AI can be exploited to automate and optimize various essential functionalities of the wireless ecosystem, such as resource allocation, channel modeling, or network planning. This article explores how AI-driven propagation models can be leveraged for the automated and expedient deployment of small cells in indoor environments. To this end, we couple a generalizable data-driven propagation model with an AI-based optimizer to determine the optimal network topology with respect to a target key performance indicator. Our approach reduces the computational time of indoor wireless network design by two to three orders of magnitude, thus enabling accurate planning that would be extremely expensive to conduct using conventional indoor propagation tools and yielding significant gains in the resulting indoor planning quality and performance.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3397801</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-0772-9967</orcidid><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2024-11, Vol.38 (6), p.451-458 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_ieee_primary_10521613 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Artificial intelligence Computational modeling Deep learning Measurement network planning Network topology Planning propagation modeling Training Ultra-dense networks Wireless networks |
title | AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20Indoor%20Wireless%20Network%20Planning%20With%20Data-Driven%20Propagation%20Models&rft.jtitle=IEEE%20network&rft.au=Bakirtzis,%20Stefanos&rft.date=2024-11-01&rft.volume=38&rft.issue=6&rft.spage=451&rft.epage=458&rft.pages=451-458&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3397801&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3397801%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10521613&rfr_iscdi=true |