Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis

Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection, finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their streng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.89818-89835
Hauptverfasser: Pardhu, Thottempudi, Kumar, Vijay, Kumar, Praveen, Deevi, Nagesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89835
container_issue
container_start_page 89818
container_title IEEE access
container_volume 12
creator Pardhu, Thottempudi
Kumar, Vijay
Kumar, Praveen
Deevi, Nagesh
description Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection, finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their strengths, challenges, and performance metrics. While several methods, including Convolutional Neural Network (CNN) approaches, have been explored, challenges such as motion state overlaps, the necessity for enhanced spatial resolution, and background noise interference persist. Among the various methods analyzed, the SGWO-based RMDL technique emerges as a frontrunner, offering superior accuracy, reduced mean squared error, and impressive true negative and positive rates. Moreover, its computational efficiency sets a precedent in human motion detection. This paper provides insights into the state-of-the-art Through the wall imaging and human vital signs observation for future research and realtime applications.
doi_str_mv 10.1109/ACCESS.2024.3397465
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10521532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521532</ieee_id><doaj_id>oai_doaj_org_article_e8dba1e13e7f4b1488798cf88d88e341</doaj_id><sourcerecordid>3075415297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-69985c14defacf49f08e933b93333de327260b7d6decc528dd9912435ca7f83f3</originalsourceid><addsrcrecordid>eNpNUV1LJDEQHI47OFF_wd1DwOdZJ-lkktzbOOcXKD6o7GPIJh13ltnJmswK_ntHR8SGpouiq5qmiuIPrRaUVvq0advz-_sFqxhfAGjJa_GjOGC01iUIqH9-w7-L45w31VRqooQ8KJaNf7GDwy0OYybdQB6XZ-WZzejJ1X5rB3Ibxy4O5D-O6D7QwzrF_dOaLG3f_yMNaeN2l3CNQ-5ekDSD7V9zl4-KX8H2GY8_52HxeHH-0F6VN3eX121zUzoQeixrrZVwlHsM1gWuQ6VQA6ymBvAITLK6Wklfe3ROMOW91pRxEM7KoCDAYXE9-_poN2aXuq1NrybaznwQMT0Zm8bO9WhQ-ZWlSAFl4CvKlZJauaCUVwqB08nrZPbapfi8xzyaTdyn6aFsoJKCU8G0nLZg3nIp5pwwfF2llXkPxMyBmPdAzGcgk-rvrOoQ8ZtCMCqAwRsknIX4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075415297</pqid></control><display><type>article</type><title>Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Pardhu, Thottempudi ; Kumar, Vijay ; Kumar, Praveen ; Deevi, Nagesh</creator><creatorcontrib>Pardhu, Thottempudi ; Kumar, Vijay ; Kumar, Praveen ; Deevi, Nagesh</creatorcontrib><description>Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection, finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their strengths, challenges, and performance metrics. While several methods, including Convolutional Neural Network (CNN) approaches, have been explored, challenges such as motion state overlaps, the necessity for enhanced spatial resolution, and background noise interference persist. Among the various methods analyzed, the SGWO-based RMDL technique emerges as a frontrunner, offering superior accuracy, reduced mean squared error, and impressive true negative and positive rates. Moreover, its computational efficiency sets a precedent in human motion detection. This paper provides insights into the state-of-the-art Through the wall imaging and human vital signs observation for future research and realtime applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3397465</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>accuracy ; Artificial neural networks ; Background noise ; Classification algorithms ; CNN ; Convolutional neural networks ; deep learning ; Human activity recognition ; Human motion ; human motion detection ; motion classification ; Motion detection ; Motion perception ; MSE ; Performance measurement ; Radar ; Radar detection ; Radar imaging ; SGWO-based RMDL ; Smart buildings ; Spatial resolution ; Synthetic aperture radar ; TNR ; TPR ; Ultra wideband radar ; Ultra wideband technology ; Ultra-wide band (UWB)</subject><ispartof>IEEE access, 2024, Vol.12, p.89818-89835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-69985c14defacf49f08e933b93333de327260b7d6decc528dd9912435ca7f83f3</cites><orcidid>0000-0001-8738-8404 ; 0000-0003-1227-3164 ; 0000-0002-9653-1951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521532$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Pardhu, Thottempudi</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Deevi, Nagesh</creatorcontrib><title>Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection, finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their strengths, challenges, and performance metrics. While several methods, including Convolutional Neural Network (CNN) approaches, have been explored, challenges such as motion state overlaps, the necessity for enhanced spatial resolution, and background noise interference persist. Among the various methods analyzed, the SGWO-based RMDL technique emerges as a frontrunner, offering superior accuracy, reduced mean squared error, and impressive true negative and positive rates. Moreover, its computational efficiency sets a precedent in human motion detection. This paper provides insights into the state-of-the-art Through the wall imaging and human vital signs observation for future research and realtime applications.</description><subject>accuracy</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Classification algorithms</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>deep learning</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>human motion detection</subject><subject>motion classification</subject><subject>Motion detection</subject><subject>Motion perception</subject><subject>MSE</subject><subject>Performance measurement</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>SGWO-based RMDL</subject><subject>Smart buildings</subject><subject>Spatial resolution</subject><subject>Synthetic aperture radar</subject><subject>TNR</subject><subject>TPR</subject><subject>Ultra wideband radar</subject><subject>Ultra wideband technology</subject><subject>Ultra-wide band (UWB)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LJDEQHI47OFF_wd1DwOdZJ-lkktzbOOcXKD6o7GPIJh13ltnJmswK_ntHR8SGpouiq5qmiuIPrRaUVvq0advz-_sFqxhfAGjJa_GjOGC01iUIqH9-w7-L45w31VRqooQ8KJaNf7GDwy0OYybdQB6XZ-WZzejJ1X5rB3Ibxy4O5D-O6D7QwzrF_dOaLG3f_yMNaeN2l3CNQ-5ekDSD7V9zl4-KX8H2GY8_52HxeHH-0F6VN3eX121zUzoQeixrrZVwlHsM1gWuQ6VQA6ymBvAITLK6Wklfe3ROMOW91pRxEM7KoCDAYXE9-_poN2aXuq1NrybaznwQMT0Zm8bO9WhQ-ZWlSAFl4CvKlZJauaCUVwqB08nrZPbapfi8xzyaTdyn6aFsoJKCU8G0nLZg3nIp5pwwfF2llXkPxMyBmPdAzGcgk-rvrOoQ8ZtCMCqAwRsknIX4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pardhu, Thottempudi</creator><creator>Kumar, Vijay</creator><creator>Kumar, Praveen</creator><creator>Deevi, Nagesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8738-8404</orcidid><orcidid>https://orcid.org/0000-0003-1227-3164</orcidid><orcidid>https://orcid.org/0000-0002-9653-1951</orcidid></search><sort><creationdate>2024</creationdate><title>Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis</title><author>Pardhu, Thottempudi ; Kumar, Vijay ; Kumar, Praveen ; Deevi, Nagesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-69985c14defacf49f08e933b93333de327260b7d6decc528dd9912435ca7f83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accuracy</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Classification algorithms</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>deep learning</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>human motion detection</topic><topic>motion classification</topic><topic>Motion detection</topic><topic>Motion perception</topic><topic>MSE</topic><topic>Performance measurement</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>SGWO-based RMDL</topic><topic>Smart buildings</topic><topic>Spatial resolution</topic><topic>Synthetic aperture radar</topic><topic>TNR</topic><topic>TPR</topic><topic>Ultra wideband radar</topic><topic>Ultra wideband technology</topic><topic>Ultra-wide band (UWB)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardhu, Thottempudi</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Deevi, Nagesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardhu, Thottempudi</au><au>Kumar, Vijay</au><au>Kumar, Praveen</au><au>Deevi, Nagesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>89818</spage><epage>89835</epage><pages>89818-89835</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection, finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their strengths, challenges, and performance metrics. While several methods, including Convolutional Neural Network (CNN) approaches, have been explored, challenges such as motion state overlaps, the necessity for enhanced spatial resolution, and background noise interference persist. Among the various methods analyzed, the SGWO-based RMDL technique emerges as a frontrunner, offering superior accuracy, reduced mean squared error, and impressive true negative and positive rates. Moreover, its computational efficiency sets a precedent in human motion detection. This paper provides insights into the state-of-the-art Through the wall imaging and human vital signs observation for future research and realtime applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3397465</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8738-8404</orcidid><orcidid>https://orcid.org/0000-0003-1227-3164</orcidid><orcidid>https://orcid.org/0000-0002-9653-1951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.89818-89835
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10521532
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects accuracy
Artificial neural networks
Background noise
Classification algorithms
CNN
Convolutional neural networks
deep learning
Human activity recognition
Human motion
human motion detection
motion classification
Motion detection
Motion perception
MSE
Performance measurement
Radar
Radar detection
Radar imaging
SGWO-based RMDL
Smart buildings
Spatial resolution
Synthetic aperture radar
TNR
TPR
Ultra wideband radar
Ultra wideband technology
Ultra-wide band (UWB)
title Advancements in UWB-Based Human Motion Detection Through Wall: A Comprehensive Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20UWB-Based%20Human%20Motion%20Detection%20Through%20Wall:%20A%20Comprehensive%20Analysis&rft.jtitle=IEEE%20access&rft.au=Pardhu,%20Thottempudi&rft.date=2024&rft.volume=12&rft.spage=89818&rft.epage=89835&rft.pages=89818-89835&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3397465&rft_dat=%3Cproquest_ieee_%3E3075415297%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075415297&rft_id=info:pmid/&rft_ieee_id=10521532&rft_doaj_id=oai_doaj_org_article_e8dba1e13e7f4b1488798cf88d88e341&rfr_iscdi=true