Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor

In this study, we propose a novel piezoresistive micro-electromechanical systems (MEMS) microphone that exploits the piezoresistive effect of a field-effect transistor (PrFET microphone). This study is the first attempt to demonstrate that the piezoresistive effect of FET channels can be applied as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-06, Vol.24 (12), p.18903-18915
Hauptverfasser: Kim, Chayeong, Noh, Eunsik, Shin, Kumjae, Moon, Wonkyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18915
container_issue 12
container_start_page 18903
container_title IEEE sensors journal
container_volume 24
creator Kim, Chayeong
Noh, Eunsik
Shin, Kumjae
Moon, Wonkyu
description In this study, we propose a novel piezoresistive micro-electromechanical systems (MEMS) microphone that exploits the piezoresistive effect of a field-effect transistor (PrFET microphone). This study is the first attempt to demonstrate that the piezoresistive effect of FET channels can be applied as a microphone sensing method. The PrFET microphone features a single diaphragm with an FET embedded in its support structure for stress concentration. It is, therefore, relatively free from stiction and particle issues, and the entire process is compatible with complementary metal-oxide semiconductors (CMOS). Unlike other types of microphone in which the sensitivity is fixed by the bias voltage, the sensitivity of the PrFET microphone can be adjusted directly through the gate of the FET. To confirm the adjustable sensitivity, we derived a sensitivity model for the PrFET microphone. Then, CMOS and MEMS processes were used to fabricate the microphone chip. Finally, the voltage output was obtained using a PrFET with a trans-impedance amplifier. The measured sensitivity ranged from -75.82 to -63.79 dB depending on the gate voltage, which was within about 1.1 dB of the calculated results. The PrFET microphone exhibited higher sensitivity compared to conventional piezoresistive microphones, and we anticipate that further improvements in performance can be achieved through optimization and signal-processing techniques.
doi_str_mv 10.1109/JSEN.2024.3394948
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10521455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521455</ieee_id><sourcerecordid>3068174534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-dc40c33d14ae8ce86db7d15f844d13aed13108b4c473ab144bb2049b6f065cc83</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKc_QPAi4HVn0py06aWOzQ82FTbBu5Impy5jNjPphAn-d1u6C2_OF-95D-eJoktGR4zR_OZpMXkeJTSBEec55CCPogETQsYsA3nc1ZzGwLP30-gshDWlLM9ENoh-587gxtYfRNWGTFEFW9qNbfZk0ezMnriKKDK32rt4rvTK1mj6drtyNZI7FdqBq0mzQvJq8cd5DDY09hvJpKpQN73D1OLGxIfJ0qu6Ezl_Hp1UahPw4pCH0dt0shw_xLOX-8fx7SzWCaRNbDRQzblhoFBqlKkpM8NEJQEM4wrbwKgsQUPGVckAyjKhkJdpRVOhteTD6Lr33Xr3tcPQFGu383V7suA0lS0jwaFVsV7VvheCx6rYevup_L5gtOgoFx3loqNcHCi3O1f9jkXEf3qRMBCC_wGab3ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068174534</pqid></control><display><type>article</type><title>Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Chayeong ; Noh, Eunsik ; Shin, Kumjae ; Moon, Wonkyu</creator><creatorcontrib>Kim, Chayeong ; Noh, Eunsik ; Shin, Kumjae ; Moon, Wonkyu</creatorcontrib><description>In this study, we propose a novel piezoresistive micro-electromechanical systems (MEMS) microphone that exploits the piezoresistive effect of a field-effect transistor (PrFET microphone). This study is the first attempt to demonstrate that the piezoresistive effect of FET channels can be applied as a microphone sensing method. The PrFET microphone features a single diaphragm with an FET embedded in its support structure for stress concentration. It is, therefore, relatively free from stiction and particle issues, and the entire process is compatible with complementary metal-oxide semiconductors (CMOS). Unlike other types of microphone in which the sensitivity is fixed by the bias voltage, the sensitivity of the PrFET microphone can be adjusted directly through the gate of the FET. To confirm the adjustable sensitivity, we derived a sensitivity model for the PrFET microphone. Then, CMOS and MEMS processes were used to fabricate the microphone chip. Finally, the voltage output was obtained using a PrFET with a trans-impedance amplifier. The measured sensitivity ranged from -75.82 to -63.79 dB depending on the gate voltage, which was within about 1.1 dB of the calculated results. The PrFET microphone exhibited higher sensitivity compared to conventional piezoresistive microphones, and we anticipate that further improvements in performance can be achieved through optimization and signal-processing techniques.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3394948</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic sensor ; CMOS ; complementary metal-oxide semiconductor (CMOS)/micro-electromechanical systems (MEMS) fabrication ; Electric potential ; Feasibility studies ; Field effect transistors ; field-effect transistor ; MEMS microphone ; Metal oxide semiconductors ; Microelectromechanical systems ; Micromachining ; Micromechanical devices ; Microphones ; Piezoresistance ; piezoresistive effect ; Semiconductor devices ; Sensitivity ; Sensors ; Stiction ; Stress ; Stress concentration ; Transistors ; Voltage</subject><ispartof>IEEE sensors journal, 2024-06, Vol.24 (12), p.18903-18915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-dc40c33d14ae8ce86db7d15f844d13aed13108b4c473ab144bb2049b6f065cc83</cites><orcidid>0009-0009-0637-1906 ; 0000-0002-7645-7010 ; 0009-0000-8577-6905 ; 0000-0001-7357-0766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Chayeong</creatorcontrib><creatorcontrib>Noh, Eunsik</creatorcontrib><creatorcontrib>Shin, Kumjae</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><title>Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this study, we propose a novel piezoresistive micro-electromechanical systems (MEMS) microphone that exploits the piezoresistive effect of a field-effect transistor (PrFET microphone). This study is the first attempt to demonstrate that the piezoresistive effect of FET channels can be applied as a microphone sensing method. The PrFET microphone features a single diaphragm with an FET embedded in its support structure for stress concentration. It is, therefore, relatively free from stiction and particle issues, and the entire process is compatible with complementary metal-oxide semiconductors (CMOS). Unlike other types of microphone in which the sensitivity is fixed by the bias voltage, the sensitivity of the PrFET microphone can be adjusted directly through the gate of the FET. To confirm the adjustable sensitivity, we derived a sensitivity model for the PrFET microphone. Then, CMOS and MEMS processes were used to fabricate the microphone chip. Finally, the voltage output was obtained using a PrFET with a trans-impedance amplifier. The measured sensitivity ranged from -75.82 to -63.79 dB depending on the gate voltage, which was within about 1.1 dB of the calculated results. The PrFET microphone exhibited higher sensitivity compared to conventional piezoresistive microphones, and we anticipate that further improvements in performance can be achieved through optimization and signal-processing techniques.</description><subject>Acoustic sensor</subject><subject>CMOS</subject><subject>complementary metal-oxide semiconductor (CMOS)/micro-electromechanical systems (MEMS) fabrication</subject><subject>Electric potential</subject><subject>Feasibility studies</subject><subject>Field effect transistors</subject><subject>field-effect transistor</subject><subject>MEMS microphone</subject><subject>Metal oxide semiconductors</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Microphones</subject><subject>Piezoresistance</subject><subject>piezoresistive effect</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Stiction</subject><subject>Stress</subject><subject>Stress concentration</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKc_QPAi4HVn0py06aWOzQ82FTbBu5Impy5jNjPphAn-d1u6C2_OF-95D-eJoktGR4zR_OZpMXkeJTSBEec55CCPogETQsYsA3nc1ZzGwLP30-gshDWlLM9ENoh-587gxtYfRNWGTFEFW9qNbfZk0ezMnriKKDK32rt4rvTK1mj6drtyNZI7FdqBq0mzQvJq8cd5DDY09hvJpKpQN73D1OLGxIfJ0qu6Ezl_Hp1UahPw4pCH0dt0shw_xLOX-8fx7SzWCaRNbDRQzblhoFBqlKkpM8NEJQEM4wrbwKgsQUPGVckAyjKhkJdpRVOhteTD6Lr33Xr3tcPQFGu383V7suA0lS0jwaFVsV7VvheCx6rYevup_L5gtOgoFx3loqNcHCi3O1f9jkXEf3qRMBCC_wGab3ng</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Kim, Chayeong</creator><creator>Noh, Eunsik</creator><creator>Shin, Kumjae</creator><creator>Moon, Wonkyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-0637-1906</orcidid><orcidid>https://orcid.org/0000-0002-7645-7010</orcidid><orcidid>https://orcid.org/0009-0000-8577-6905</orcidid><orcidid>https://orcid.org/0000-0001-7357-0766</orcidid></search><sort><creationdate>20240615</creationdate><title>Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor</title><author>Kim, Chayeong ; Noh, Eunsik ; Shin, Kumjae ; Moon, Wonkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-dc40c33d14ae8ce86db7d15f844d13aed13108b4c473ab144bb2049b6f065cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic sensor</topic><topic>CMOS</topic><topic>complementary metal-oxide semiconductor (CMOS)/micro-electromechanical systems (MEMS) fabrication</topic><topic>Electric potential</topic><topic>Feasibility studies</topic><topic>Field effect transistors</topic><topic>field-effect transistor</topic><topic>MEMS microphone</topic><topic>Metal oxide semiconductors</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Microphones</topic><topic>Piezoresistance</topic><topic>piezoresistive effect</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Stiction</topic><topic>Stress</topic><topic>Stress concentration</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chayeong</creatorcontrib><creatorcontrib>Noh, Eunsik</creatorcontrib><creatorcontrib>Shin, Kumjae</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Chayeong</au><au>Noh, Eunsik</au><au>Shin, Kumjae</au><au>Moon, Wonkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-06-15</date><risdate>2024</risdate><volume>24</volume><issue>12</issue><spage>18903</spage><epage>18915</epage><pages>18903-18915</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this study, we propose a novel piezoresistive micro-electromechanical systems (MEMS) microphone that exploits the piezoresistive effect of a field-effect transistor (PrFET microphone). This study is the first attempt to demonstrate that the piezoresistive effect of FET channels can be applied as a microphone sensing method. The PrFET microphone features a single diaphragm with an FET embedded in its support structure for stress concentration. It is, therefore, relatively free from stiction and particle issues, and the entire process is compatible with complementary metal-oxide semiconductors (CMOS). Unlike other types of microphone in which the sensitivity is fixed by the bias voltage, the sensitivity of the PrFET microphone can be adjusted directly through the gate of the FET. To confirm the adjustable sensitivity, we derived a sensitivity model for the PrFET microphone. Then, CMOS and MEMS processes were used to fabricate the microphone chip. Finally, the voltage output was obtained using a PrFET with a trans-impedance amplifier. The measured sensitivity ranged from -75.82 to -63.79 dB depending on the gate voltage, which was within about 1.1 dB of the calculated results. The PrFET microphone exhibited higher sensitivity compared to conventional piezoresistive microphones, and we anticipate that further improvements in performance can be achieved through optimization and signal-processing techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3394948</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-0637-1906</orcidid><orcidid>https://orcid.org/0000-0002-7645-7010</orcidid><orcidid>https://orcid.org/0009-0000-8577-6905</orcidid><orcidid>https://orcid.org/0000-0001-7357-0766</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-06, Vol.24 (12), p.18903-18915
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10521455
source IEEE Electronic Library (IEL)
subjects Acoustic sensor
CMOS
complementary metal-oxide semiconductor (CMOS)/micro-electromechanical systems (MEMS) fabrication
Electric potential
Feasibility studies
Field effect transistors
field-effect transistor
MEMS microphone
Metal oxide semiconductors
Microelectromechanical systems
Micromachining
Micromechanical devices
Microphones
Piezoresistance
piezoresistive effect
Semiconductor devices
Sensitivity
Sensors
Stiction
Stress
Stress concentration
Transistors
Voltage
title Modeling and Feasibility Study of a Micro-Machined Microphone Based on the Piezoresistive Effect of a Field-Effect Transistor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Feasibility%20Study%20of%20a%20Micro-Machined%20Microphone%20Based%20on%20the%20Piezoresistive%20Effect%20of%20a%20Field-Effect%20Transistor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kim,%20Chayeong&rft.date=2024-06-15&rft.volume=24&rft.issue=12&rft.spage=18903&rft.epage=18915&rft.pages=18903-18915&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3394948&rft_dat=%3Cproquest_RIE%3E3068174534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068174534&rft_id=info:pmid/&rft_ieee_id=10521455&rfr_iscdi=true