Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT

Cone-beam computed tomography (CBCT) has been widely used in image guided radiotherapy (IGRT). In order to avoid the possible collisions of the moving gantry with patients and devices, the limited-angle scanning protocol is often adopted for CBCT. However, the missing views of projection data will i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Tao, Yiyuan, Zhang, Zhizhou, Hu, Dianlin, Wu, Zhan, Mao, Weilong, Zhu, Guojun, Fei, Xuanjia, Ji, Xu, Zhang, Yikun, Xie, Shipeng, Yao, Yi, Chen, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Tao, Yiyuan
Zhang, Zhizhou
Hu, Dianlin
Wu, Zhan
Mao, Weilong
Zhu, Guojun
Fei, Xuanjia
Ji, Xu
Zhang, Yikun
Xie, Shipeng
Yao, Yi
Chen, Yang
description Cone-beam computed tomography (CBCT) has been widely used in image guided radiotherapy (IGRT). In order to avoid the possible collisions of the moving gantry with patients and devices, the limited-angle scanning protocol is often adopted for CBCT. However, the missing views of projection data will induce severe wedge artifacts to the reconstructed images, having a negative influence on the following therapeutic procedures. Compared to limited-angle CBCT images, the planning CT images (pCT) acquired earlier for the same patient are artifact-free, which has the potential to improve the quality of limited-angle CBCT. In this context, this paper proposes the prior image constrained adaptive step size iterative reconstruction (PICAS) method. PICAS builds on PICCS (Prior Image Constrained Compressed Sensing) but is improved after taking into account the characteristics of IGRT. In PICAS, the high-quality pCT images are regarded as prior images to enhance the performance in artifact removal. To address the mismatch between pCT images and CBCT images, the pCT images are reprojected and reconstructed using the same imaging geometry as CBCT. Then, a transformation matrix between the pseudo limited-angle pCT images and limited-angle images is obtained and it is further applied to the high-quality pCT images to generate the artifact-free prior images. In addition, an adaptive gradient descent optimization based on convex set projection and Lipschitz constant is adopted to accelerate the convergence of the algorithm. The proposed PICAS algorithm has been evaluated on the real data from different parts (head, lung, and abdomen) and under the limited-angle configurations with different scanning ranges (80°, 100° and 120°). Qualitative and quantitative results demonstrate that PICAS has the potential to quickly reconstruct high-quality CBCT images in limited-angle scanning scenes, and thereby improve the accuracy of radiotherapy and shorten the time of surgery.
doi_str_mv 10.1109/TIM.2024.3396857
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10520322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10520322</ieee_id><sourcerecordid>3055171657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-6db1fb713e642c5ada8edf35f7bd73bb0bbe3dcd6f64736f605708aee361b513</originalsourceid><addsrcrecordid>eNpNkElPwzAQhS0EEqVw58DBEucUL7GdHEvEEqkIRHO37HhSXLVJcVwQ_HrS5cBlRpp5783oQ-iakgmlJL-rypcJIyydcJ7LTKgTNKJCqCSXkp2iESE0S_JUyHN00fdLQoiSqRoh_RZ8F3C5NgtIiq7tYzC-BYfLCMFE_wX4Her9fFtH37X428cPPHVms1_OI2zw3P8CboaYmV_7CC6ZtosV4OK-qC7RWWNWPVwd-xhVjw9V8ZzMXp_KYjpLapaKmEhnaWMV5SBTVgvjTAau4aJR1iluLbEWuKudbIav-VCJUCQzAFxSKygfo9tD7CZ0n1voo15229AOFzUnQlBFpVCDihxUdej6PkCjN8GvTfjRlOgdRT1Q1DuK-khxsNwcLB4A_skFI5wx_gceb27I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055171657</pqid></control><display><type>article</type><title>Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT</title><source>IEEE Electronic Library (IEL)</source><creator>Tao, Yiyuan ; Zhang, Zhizhou ; Hu, Dianlin ; Wu, Zhan ; Mao, Weilong ; Zhu, Guojun ; Fei, Xuanjia ; Ji, Xu ; Zhang, Yikun ; Xie, Shipeng ; Yao, Yi ; Chen, Yang</creator><creatorcontrib>Tao, Yiyuan ; Zhang, Zhizhou ; Hu, Dianlin ; Wu, Zhan ; Mao, Weilong ; Zhu, Guojun ; Fei, Xuanjia ; Ji, Xu ; Zhang, Yikun ; Xie, Shipeng ; Yao, Yi ; Chen, Yang</creatorcontrib><description>Cone-beam computed tomography (CBCT) has been widely used in image guided radiotherapy (IGRT). In order to avoid the possible collisions of the moving gantry with patients and devices, the limited-angle scanning protocol is often adopted for CBCT. However, the missing views of projection data will induce severe wedge artifacts to the reconstructed images, having a negative influence on the following therapeutic procedures. Compared to limited-angle CBCT images, the planning CT images (pCT) acquired earlier for the same patient are artifact-free, which has the potential to improve the quality of limited-angle CBCT. In this context, this paper proposes the prior image constrained adaptive step size iterative reconstruction (PICAS) method. PICAS builds on PICCS (Prior Image Constrained Compressed Sensing) but is improved after taking into account the characteristics of IGRT. In PICAS, the high-quality pCT images are regarded as prior images to enhance the performance in artifact removal. To address the mismatch between pCT images and CBCT images, the pCT images are reprojected and reconstructed using the same imaging geometry as CBCT. Then, a transformation matrix between the pseudo limited-angle pCT images and limited-angle images is obtained and it is further applied to the high-quality pCT images to generate the artifact-free prior images. In addition, an adaptive gradient descent optimization based on convex set projection and Lipschitz constant is adopted to accelerate the convergence of the algorithm. The proposed PICAS algorithm has been evaluated on the real data from different parts (head, lung, and abdomen) and under the limited-angle configurations with different scanning ranges (80°, 100° and 120°). Qualitative and quantitative results demonstrate that PICAS has the potential to quickly reconstruct high-quality CBCT images in limited-angle scanning scenes, and thereby improve the accuracy of radiotherapy and shorten the time of surgery.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3396857</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive step size ; Algorithms ; Compressed sensing ; Computed tomography ; Convexity ; Image acquisition ; Image enhancement ; Image quality ; Image reconstruction ; Imaging ; iterative reconstruction ; Limited-angle CT reconstruction ; Medical imaging ; Planning ; prior image constrained ; Radiation therapy</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-6db1fb713e642c5ada8edf35f7bd73bb0bbe3dcd6f64736f605708aee361b513</cites><orcidid>0000-0002-5393-9068 ; 0000-0002-5660-6349 ; 0000-0003-2233-3343 ; 0000-0002-3914-0102 ; 0000-0001-7901-5253 ; 0000-0002-4048-4869 ; 0000-0003-4857-9878 ; 0000-0003-1155-743X ; 0009-0001-9265-7899 ; 0000-0001-9546-2010 ; 0009-0005-8018-2741 ; 0009-0003-7612-9070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10520322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10520322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Zhizhou</creatorcontrib><creatorcontrib>Hu, Dianlin</creatorcontrib><creatorcontrib>Wu, Zhan</creatorcontrib><creatorcontrib>Mao, Weilong</creatorcontrib><creatorcontrib>Zhu, Guojun</creatorcontrib><creatorcontrib>Fei, Xuanjia</creatorcontrib><creatorcontrib>Ji, Xu</creatorcontrib><creatorcontrib>Zhang, Yikun</creatorcontrib><creatorcontrib>Xie, Shipeng</creatorcontrib><creatorcontrib>Yao, Yi</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><title>Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Cone-beam computed tomography (CBCT) has been widely used in image guided radiotherapy (IGRT). In order to avoid the possible collisions of the moving gantry with patients and devices, the limited-angle scanning protocol is often adopted for CBCT. However, the missing views of projection data will induce severe wedge artifacts to the reconstructed images, having a negative influence on the following therapeutic procedures. Compared to limited-angle CBCT images, the planning CT images (pCT) acquired earlier for the same patient are artifact-free, which has the potential to improve the quality of limited-angle CBCT. In this context, this paper proposes the prior image constrained adaptive step size iterative reconstruction (PICAS) method. PICAS builds on PICCS (Prior Image Constrained Compressed Sensing) but is improved after taking into account the characteristics of IGRT. In PICAS, the high-quality pCT images are regarded as prior images to enhance the performance in artifact removal. To address the mismatch between pCT images and CBCT images, the pCT images are reprojected and reconstructed using the same imaging geometry as CBCT. Then, a transformation matrix between the pseudo limited-angle pCT images and limited-angle images is obtained and it is further applied to the high-quality pCT images to generate the artifact-free prior images. In addition, an adaptive gradient descent optimization based on convex set projection and Lipschitz constant is adopted to accelerate the convergence of the algorithm. The proposed PICAS algorithm has been evaluated on the real data from different parts (head, lung, and abdomen) and under the limited-angle configurations with different scanning ranges (80°, 100° and 120°). Qualitative and quantitative results demonstrate that PICAS has the potential to quickly reconstruct high-quality CBCT images in limited-angle scanning scenes, and thereby improve the accuracy of radiotherapy and shorten the time of surgery.</description><subject>adaptive step size</subject><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Computed tomography</subject><subject>Convexity</subject><subject>Image acquisition</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>iterative reconstruction</subject><subject>Limited-angle CT reconstruction</subject><subject>Medical imaging</subject><subject>Planning</subject><subject>prior image constrained</subject><subject>Radiation therapy</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkElPwzAQhS0EEqVw58DBEucUL7GdHEvEEqkIRHO37HhSXLVJcVwQ_HrS5cBlRpp5783oQ-iakgmlJL-rypcJIyydcJ7LTKgTNKJCqCSXkp2iESE0S_JUyHN00fdLQoiSqRoh_RZ8F3C5NgtIiq7tYzC-BYfLCMFE_wX4Her9fFtH37X428cPPHVms1_OI2zw3P8CboaYmV_7CC6ZtosV4OK-qC7RWWNWPVwd-xhVjw9V8ZzMXp_KYjpLapaKmEhnaWMV5SBTVgvjTAau4aJR1iluLbEWuKudbIav-VCJUCQzAFxSKygfo9tD7CZ0n1voo15229AOFzUnQlBFpVCDihxUdej6PkCjN8GvTfjRlOgdRT1Q1DuK-khxsNwcLB4A_skFI5wx_gceb27I</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tao, Yiyuan</creator><creator>Zhang, Zhizhou</creator><creator>Hu, Dianlin</creator><creator>Wu, Zhan</creator><creator>Mao, Weilong</creator><creator>Zhu, Guojun</creator><creator>Fei, Xuanjia</creator><creator>Ji, Xu</creator><creator>Zhang, Yikun</creator><creator>Xie, Shipeng</creator><creator>Yao, Yi</creator><creator>Chen, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5393-9068</orcidid><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid><orcidid>https://orcid.org/0000-0003-2233-3343</orcidid><orcidid>https://orcid.org/0000-0002-3914-0102</orcidid><orcidid>https://orcid.org/0000-0001-7901-5253</orcidid><orcidid>https://orcid.org/0000-0002-4048-4869</orcidid><orcidid>https://orcid.org/0000-0003-4857-9878</orcidid><orcidid>https://orcid.org/0000-0003-1155-743X</orcidid><orcidid>https://orcid.org/0009-0001-9265-7899</orcidid><orcidid>https://orcid.org/0000-0001-9546-2010</orcidid><orcidid>https://orcid.org/0009-0005-8018-2741</orcidid><orcidid>https://orcid.org/0009-0003-7612-9070</orcidid></search><sort><creationdate>20240101</creationdate><title>Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT</title><author>Tao, Yiyuan ; Zhang, Zhizhou ; Hu, Dianlin ; Wu, Zhan ; Mao, Weilong ; Zhu, Guojun ; Fei, Xuanjia ; Ji, Xu ; Zhang, Yikun ; Xie, Shipeng ; Yao, Yi ; Chen, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-6db1fb713e642c5ada8edf35f7bd73bb0bbe3dcd6f64736f605708aee361b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive step size</topic><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Computed tomography</topic><topic>Convexity</topic><topic>Image acquisition</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>iterative reconstruction</topic><topic>Limited-angle CT reconstruction</topic><topic>Medical imaging</topic><topic>Planning</topic><topic>prior image constrained</topic><topic>Radiation therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Zhizhou</creatorcontrib><creatorcontrib>Hu, Dianlin</creatorcontrib><creatorcontrib>Wu, Zhan</creatorcontrib><creatorcontrib>Mao, Weilong</creatorcontrib><creatorcontrib>Zhu, Guojun</creatorcontrib><creatorcontrib>Fei, Xuanjia</creatorcontrib><creatorcontrib>Ji, Xu</creatorcontrib><creatorcontrib>Zhang, Yikun</creatorcontrib><creatorcontrib>Xie, Shipeng</creatorcontrib><creatorcontrib>Yao, Yi</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Yiyuan</au><au>Zhang, Zhizhou</au><au>Hu, Dianlin</au><au>Wu, Zhan</au><au>Mao, Weilong</au><au>Zhu, Guojun</au><au>Fei, Xuanjia</au><au>Ji, Xu</au><au>Zhang, Yikun</au><au>Xie, Shipeng</au><au>Yao, Yi</au><au>Chen, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Cone-beam computed tomography (CBCT) has been widely used in image guided radiotherapy (IGRT). In order to avoid the possible collisions of the moving gantry with patients and devices, the limited-angle scanning protocol is often adopted for CBCT. However, the missing views of projection data will induce severe wedge artifacts to the reconstructed images, having a negative influence on the following therapeutic procedures. Compared to limited-angle CBCT images, the planning CT images (pCT) acquired earlier for the same patient are artifact-free, which has the potential to improve the quality of limited-angle CBCT. In this context, this paper proposes the prior image constrained adaptive step size iterative reconstruction (PICAS) method. PICAS builds on PICCS (Prior Image Constrained Compressed Sensing) but is improved after taking into account the characteristics of IGRT. In PICAS, the high-quality pCT images are regarded as prior images to enhance the performance in artifact removal. To address the mismatch between pCT images and CBCT images, the pCT images are reprojected and reconstructed using the same imaging geometry as CBCT. Then, a transformation matrix between the pseudo limited-angle pCT images and limited-angle images is obtained and it is further applied to the high-quality pCT images to generate the artifact-free prior images. In addition, an adaptive gradient descent optimization based on convex set projection and Lipschitz constant is adopted to accelerate the convergence of the algorithm. The proposed PICAS algorithm has been evaluated on the real data from different parts (head, lung, and abdomen) and under the limited-angle configurations with different scanning ranges (80°, 100° and 120°). Qualitative and quantitative results demonstrate that PICAS has the potential to quickly reconstruct high-quality CBCT images in limited-angle scanning scenes, and thereby improve the accuracy of radiotherapy and shorten the time of surgery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3396857</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5393-9068</orcidid><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid><orcidid>https://orcid.org/0000-0003-2233-3343</orcidid><orcidid>https://orcid.org/0000-0002-3914-0102</orcidid><orcidid>https://orcid.org/0000-0001-7901-5253</orcidid><orcidid>https://orcid.org/0000-0002-4048-4869</orcidid><orcidid>https://orcid.org/0000-0003-4857-9878</orcidid><orcidid>https://orcid.org/0000-0003-1155-743X</orcidid><orcidid>https://orcid.org/0009-0001-9265-7899</orcidid><orcidid>https://orcid.org/0000-0001-9546-2010</orcidid><orcidid>https://orcid.org/0009-0005-8018-2741</orcidid><orcidid>https://orcid.org/0009-0003-7612-9070</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10520322
source IEEE Electronic Library (IEL)
subjects adaptive step size
Algorithms
Compressed sensing
Computed tomography
Convexity
Image acquisition
Image enhancement
Image quality
Image reconstruction
Imaging
iterative reconstruction
Limited-angle CT reconstruction
Medical imaging
Planning
prior image constrained
Radiation therapy
title Prior Image-Constrained Iterative Reconstruction with Adaptive Step Size for Limited-Angle CBCT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prior%20Image-Constrained%20Iterative%20Reconstruction%20with%20Adaptive%20Step%20Size%20for%20Limited-Angle%20CBCT&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Tao,%20Yiyuan&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3396857&rft_dat=%3Cproquest_RIE%3E3055171657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055171657&rft_id=info:pmid/&rft_ieee_id=10520322&rfr_iscdi=true