Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties

Renewable energy resources (RERs) are currently integrated at different layers of the grid network (either transmission or distribution); the location in the network can depend on the size or policy-related aspects of the resources. The current approach to the optimal power flow methods requires ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-07, Vol.60 (4), p.5577-5588
Hauptverfasser: Ogundairo, Olalekan, Hasan, Md Shamim, Kamalasadan, Sukumar, K, Biju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5588
container_issue 4
container_start_page 5577
container_title IEEE transactions on industry applications
container_volume 60
creator Ogundairo, Olalekan
Hasan, Md Shamim
Kamalasadan, Sukumar
K, Biju
description Renewable energy resources (RERs) are currently integrated at different layers of the grid network (either transmission or distribution); the location in the network can depend on the size or policy-related aspects of the resources. The current approach to the optimal power flow methods requires individual solutions for both transmission and distribution networks, and this is often done with no exchange of information between the networks. Moreover, RERs are stochastic in nature, and their uncertainty is a major concern for utilities, even though such integration is economic and sustainable. In this article, a stochastic integrated linear optimization (SILP) framework is modeled to solve the optimal power flow for integrated transmission and distribution networks. The approach is utilized to demonstrate the capability of the framework to handle uncertainty caused by RERs and can help utilities achieve optimum operation based on some key objectives: the cost of operation, the minimization of network loss, and voltage deviation. The simulation analysis is performed on two different integrated T&D networks, IEEE 57-bus & 34-bus and IEEE 118-bus & 123-bus. The simulation results proved that the proposed architecture finds the global optimal solution and has a significant advantage when compared to the state-of-the-art in terms of voltage violations, cost and loss improvement, and increased RER penetration.
doi_str_mv 10.1109/TIA.2024.3395588
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10517420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517420</ieee_id><sourcerecordid>10_1109_TIA_2024_3395588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-5a7f2c25a65a3652d4b48ea112a35929b46f9b1b53b7401a1f887f4650eec13</originalsourceid><addsrcrecordid>eNpNkM1OAjEURhujiYjuXbjoCwz29mdmuiSoSEJkAcblpNO5A1XpkLbGyM43F4REV3dxz_kWh5BrYAMApm8Xk-GAMy4HQmilyvKE9EALnWmRF6ekx5gWmdZanpOLGF8ZA6lA9sj3PHV2ZWJyls42ya3d1iTXedq1dOITLoNJ2NBFMD6uXYz7l_ENvXMxBVd__LJPmD678EZHnY-uweD88g_Y2WP0GA6zLy6t6LO3GJJxPjmMl-SsNe8Rr463T-YP94vRYzadjSej4TSzHIqUKVO03HJlcmVErngja1miAeBGKM11LfNW11ArUReSgYG2LItW5oohWhB9wg6rNnQxBmyrTXBrE74qYNU-YLULWO0DVseAO-XmoDhE_IcrKCRn4geEX3BN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties</title><source>IEEE Electronic Library (IEL)</source><creator>Ogundairo, Olalekan ; Hasan, Md Shamim ; Kamalasadan, Sukumar ; K, Biju</creator><creatorcontrib>Ogundairo, Olalekan ; Hasan, Md Shamim ; Kamalasadan, Sukumar ; K, Biju</creatorcontrib><description>Renewable energy resources (RERs) are currently integrated at different layers of the grid network (either transmission or distribution); the location in the network can depend on the size or policy-related aspects of the resources. The current approach to the optimal power flow methods requires individual solutions for both transmission and distribution networks, and this is often done with no exchange of information between the networks. Moreover, RERs are stochastic in nature, and their uncertainty is a major concern for utilities, even though such integration is economic and sustainable. In this article, a stochastic integrated linear optimization (SILP) framework is modeled to solve the optimal power flow for integrated transmission and distribution networks. The approach is utilized to demonstrate the capability of the framework to handle uncertainty caused by RERs and can help utilities achieve optimum operation based on some key objectives: the cost of operation, the minimization of network loss, and voltage deviation. The simulation analysis is performed on two different integrated T&amp;D networks, IEEE 57-bus &amp; 34-bus and IEEE 118-bus &amp; 123-bus. The simulation results proved that the proposed architecture finds the global optimal solution and has a significant advantage when compared to the state-of-the-art in terms of voltage violations, cost and loss improvement, and increased RER penetration.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3395588</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ancillary services ; Costs ; Distribution networks ; integrated optimization engine (IOE) ; linear decision rule (LDR) ; Load flow ; Optimization ; point of common coupling (PCC) ; semi-definite programming (SDP) ; Stochastic processes ; transmission and distribution (T&amp;D) ; Uncertainty ; Voltage</subject><ispartof>IEEE transactions on industry applications, 2024-07, Vol.60 (4), p.5577-5588</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-5a7f2c25a65a3652d4b48ea112a35929b46f9b1b53b7401a1f887f4650eec13</cites><orcidid>0000-0002-1955-0200 ; 0000-0002-1863-615X ; 0000-0001-5276-9071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10517420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10517420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ogundairo, Olalekan</creatorcontrib><creatorcontrib>Hasan, Md Shamim</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><creatorcontrib>K, Biju</creatorcontrib><title>Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Renewable energy resources (RERs) are currently integrated at different layers of the grid network (either transmission or distribution); the location in the network can depend on the size or policy-related aspects of the resources. The current approach to the optimal power flow methods requires individual solutions for both transmission and distribution networks, and this is often done with no exchange of information between the networks. Moreover, RERs are stochastic in nature, and their uncertainty is a major concern for utilities, even though such integration is economic and sustainable. In this article, a stochastic integrated linear optimization (SILP) framework is modeled to solve the optimal power flow for integrated transmission and distribution networks. The approach is utilized to demonstrate the capability of the framework to handle uncertainty caused by RERs and can help utilities achieve optimum operation based on some key objectives: the cost of operation, the minimization of network loss, and voltage deviation. The simulation analysis is performed on two different integrated T&amp;D networks, IEEE 57-bus &amp; 34-bus and IEEE 118-bus &amp; 123-bus. The simulation results proved that the proposed architecture finds the global optimal solution and has a significant advantage when compared to the state-of-the-art in terms of voltage violations, cost and loss improvement, and increased RER penetration.</description><subject>Ancillary services</subject><subject>Costs</subject><subject>Distribution networks</subject><subject>integrated optimization engine (IOE)</subject><subject>linear decision rule (LDR)</subject><subject>Load flow</subject><subject>Optimization</subject><subject>point of common coupling (PCC)</subject><subject>semi-definite programming (SDP)</subject><subject>Stochastic processes</subject><subject>transmission and distribution (T&amp;D)</subject><subject>Uncertainty</subject><subject>Voltage</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OAjEURhujiYjuXbjoCwz29mdmuiSoSEJkAcblpNO5A1XpkLbGyM43F4REV3dxz_kWh5BrYAMApm8Xk-GAMy4HQmilyvKE9EALnWmRF6ekx5gWmdZanpOLGF8ZA6lA9sj3PHV2ZWJyls42ya3d1iTXedq1dOITLoNJ2NBFMD6uXYz7l_ENvXMxBVd__LJPmD678EZHnY-uweD88g_Y2WP0GA6zLy6t6LO3GJJxPjmMl-SsNe8Rr463T-YP94vRYzadjSej4TSzHIqUKVO03HJlcmVErngja1miAeBGKM11LfNW11ArUReSgYG2LItW5oohWhB9wg6rNnQxBmyrTXBrE74qYNU-YLULWO0DVseAO-XmoDhE_IcrKCRn4geEX3BN</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ogundairo, Olalekan</creator><creator>Hasan, Md Shamim</creator><creator>Kamalasadan, Sukumar</creator><creator>K, Biju</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1955-0200</orcidid><orcidid>https://orcid.org/0000-0002-1863-615X</orcidid><orcidid>https://orcid.org/0000-0001-5276-9071</orcidid></search><sort><creationdate>20240701</creationdate><title>Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties</title><author>Ogundairo, Olalekan ; Hasan, Md Shamim ; Kamalasadan, Sukumar ; K, Biju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-5a7f2c25a65a3652d4b48ea112a35929b46f9b1b53b7401a1f887f4650eec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ancillary services</topic><topic>Costs</topic><topic>Distribution networks</topic><topic>integrated optimization engine (IOE)</topic><topic>linear decision rule (LDR)</topic><topic>Load flow</topic><topic>Optimization</topic><topic>point of common coupling (PCC)</topic><topic>semi-definite programming (SDP)</topic><topic>Stochastic processes</topic><topic>transmission and distribution (T&amp;D)</topic><topic>Uncertainty</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogundairo, Olalekan</creatorcontrib><creatorcontrib>Hasan, Md Shamim</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><creatorcontrib>K, Biju</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ogundairo, Olalekan</au><au>Hasan, Md Shamim</au><au>Kamalasadan, Sukumar</au><au>K, Biju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>60</volume><issue>4</issue><spage>5577</spage><epage>5588</epage><pages>5577-5588</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Renewable energy resources (RERs) are currently integrated at different layers of the grid network (either transmission or distribution); the location in the network can depend on the size or policy-related aspects of the resources. The current approach to the optimal power flow methods requires individual solutions for both transmission and distribution networks, and this is often done with no exchange of information between the networks. Moreover, RERs are stochastic in nature, and their uncertainty is a major concern for utilities, even though such integration is economic and sustainable. In this article, a stochastic integrated linear optimization (SILP) framework is modeled to solve the optimal power flow for integrated transmission and distribution networks. The approach is utilized to demonstrate the capability of the framework to handle uncertainty caused by RERs and can help utilities achieve optimum operation based on some key objectives: the cost of operation, the minimization of network loss, and voltage deviation. The simulation analysis is performed on two different integrated T&amp;D networks, IEEE 57-bus &amp; 34-bus and IEEE 118-bus &amp; 123-bus. The simulation results proved that the proposed architecture finds the global optimal solution and has a significant advantage when compared to the state-of-the-art in terms of voltage violations, cost and loss improvement, and increased RER penetration.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3395588</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1955-0200</orcidid><orcidid>https://orcid.org/0000-0002-1863-615X</orcidid><orcidid>https://orcid.org/0000-0001-5276-9071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2024-07, Vol.60 (4), p.5577-5588
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_10517420
source IEEE Electronic Library (IEL)
subjects Ancillary services
Costs
Distribution networks
integrated optimization engine (IOE)
linear decision rule (LDR)
Load flow
Optimization
point of common coupling (PCC)
semi-definite programming (SDP)
Stochastic processes
transmission and distribution (T&D)
Uncertainty
Voltage
title Stochastic Optimization of Integrated Transmission and Distribution Network Considering Distributed Generation With Uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimization%20of%20Integrated%20Transmission%20and%20Distribution%20Network%20Considering%20Distributed%20Generation%20With%20Uncertainties&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Ogundairo,%20Olalekan&rft.date=2024-07-01&rft.volume=60&rft.issue=4&rft.spage=5577&rft.epage=5588&rft.pages=5577-5588&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3395588&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3395588%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10517420&rfr_iscdi=true