Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification
The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain feature...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.9797-9810 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9810 |
---|---|
container_issue | |
container_start_page | 9797 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Yin, Qiang Gao, Li Zhou, Yongsheng Li, Yang Zhang, Fan Lopez-Martinez, Carlos Hong, Wen |
description | The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models. |
doi_str_mv | 10.1109/JSTARS.2024.3395689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10517372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517372</ieee_id><doaj_id>oai_doaj_org_article_531342485c354b7e9a93480a1809b8e2</doaj_id><sourcerecordid>3056010323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</originalsourceid><addsrcrecordid>eNpNkUGP0zAQhS0EEqXwC-BgiXOK7bFj-1hFsCzaCtQWrpbjTBdX2ThrpwL-PdnNCnEazei97430CHnL2YZzZj98ORy3-8NGMCE3AFbVxj4jK8EVr7gC9ZysuAVbccnkS_KqlDNjtdAWVuS-ST8x4xCQ7vyU42_6Lf3CTHepw56eUqaH4KcJcxxu6Q-fo59iGugex4wFh2lZ40B3l36K1RHvxpR9P1P6w3ZPm5xG2vS-lHiK4VH8mrw4-b7gm6e5Jt8_fTw2n6ubr1fXzfamCqDsVOlOmJZrbjC03EjRBt9CbTqQrLWs09ZIa1uhRKtNbZkXoUMBGlXHTCd0DWtyvXC75M9uzPHO5z8u-egeDynfOp-nGHp0CjhIIY2ao2Wr0XoL0jDPDbOtmbFr8n5hjTndX7BM7pwueZjfd8BUzTgDAbMKFlXIqZSMp3-pnLmHntzSk3voyT31NLveLa6IiP85FNegBfwF9g-Ogg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056010323</pqid></control><display><type>article</type><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</creator><creatorcontrib>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</creatorcontrib><description>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3395689</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Coherence ; Coherent scattering ; Crop classification ; Crops ; Data models ; data representation model ; Feature extraction ; Matrix decomposition ; multitemporal polarimetric SAR (PolSAR) ; Radarsat ; Representations ; Scattering ; scattering variation ; Spatial variations ; Transformers ; vision transformer (ViT)</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9797-9810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</cites><orcidid>0000-0002-1366-9446 ; 0009-0009-0441-5012 ; 0000-0001-7261-7606 ; 0000-0002-1025-9812 ; 0009-0009-6927-7271 ; 0000-0002-2058-2373 ; 0000-0002-8413-4756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yin, Qiang</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><creatorcontrib>Hong, Wen</creatorcontrib><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</description><subject>Classification</subject><subject>Coherence</subject><subject>Coherent scattering</subject><subject>Crop classification</subject><subject>Crops</subject><subject>Data models</subject><subject>data representation model</subject><subject>Feature extraction</subject><subject>Matrix decomposition</subject><subject>multitemporal polarimetric SAR (PolSAR)</subject><subject>Radarsat</subject><subject>Representations</subject><subject>Scattering</subject><subject>scattering variation</subject><subject>Spatial variations</subject><subject>Transformers</subject><subject>vision transformer (ViT)</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUGP0zAQhS0EEqXwC-BgiXOK7bFj-1hFsCzaCtQWrpbjTBdX2ThrpwL-PdnNCnEazei97430CHnL2YZzZj98ORy3-8NGMCE3AFbVxj4jK8EVr7gC9ZysuAVbccnkS_KqlDNjtdAWVuS-ST8x4xCQ7vyU42_6Lf3CTHepw56eUqaH4KcJcxxu6Q-fo59iGugex4wFh2lZ40B3l36K1RHvxpR9P1P6w3ZPm5xG2vS-lHiK4VH8mrw4-b7gm6e5Jt8_fTw2n6ubr1fXzfamCqDsVOlOmJZrbjC03EjRBt9CbTqQrLWs09ZIa1uhRKtNbZkXoUMBGlXHTCd0DWtyvXC75M9uzPHO5z8u-egeDynfOp-nGHp0CjhIIY2ao2Wr0XoL0jDPDbOtmbFr8n5hjTndX7BM7pwueZjfd8BUzTgDAbMKFlXIqZSMp3-pnLmHntzSk3voyT31NLveLa6IiP85FNegBfwF9g-Ogg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yin, Qiang</creator><creator>Gao, Li</creator><creator>Zhou, Yongsheng</creator><creator>Li, Yang</creator><creator>Zhang, Fan</creator><creator>Lopez-Martinez, Carlos</creator><creator>Hong, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1366-9446</orcidid><orcidid>https://orcid.org/0009-0009-0441-5012</orcidid><orcidid>https://orcid.org/0000-0001-7261-7606</orcidid><orcidid>https://orcid.org/0000-0002-1025-9812</orcidid><orcidid>https://orcid.org/0009-0009-6927-7271</orcidid><orcidid>https://orcid.org/0000-0002-2058-2373</orcidid><orcidid>https://orcid.org/0000-0002-8413-4756</orcidid></search><sort><creationdate>2024</creationdate><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><author>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Coherence</topic><topic>Coherent scattering</topic><topic>Crop classification</topic><topic>Crops</topic><topic>Data models</topic><topic>data representation model</topic><topic>Feature extraction</topic><topic>Matrix decomposition</topic><topic>multitemporal polarimetric SAR (PolSAR)</topic><topic>Radarsat</topic><topic>Representations</topic><topic>Scattering</topic><topic>scattering variation</topic><topic>Spatial variations</topic><topic>Transformers</topic><topic>vision transformer (ViT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qiang</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><creatorcontrib>Hong, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Qiang</au><au>Gao, Li</au><au>Zhou, Yongsheng</au><au>Li, Yang</au><au>Zhang, Fan</au><au>Lopez-Martinez, Carlos</au><au>Hong, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>9797</spage><epage>9810</epage><pages>9797-9810</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3395689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1366-9446</orcidid><orcidid>https://orcid.org/0009-0009-0441-5012</orcidid><orcidid>https://orcid.org/0000-0001-7261-7606</orcidid><orcidid>https://orcid.org/0000-0002-1025-9812</orcidid><orcidid>https://orcid.org/0009-0009-6927-7271</orcidid><orcidid>https://orcid.org/0000-0002-2058-2373</orcidid><orcidid>https://orcid.org/0000-0002-8413-4756</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9797-9810 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_10517372 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Coherence Coherent scattering Crop classification Crops Data models data representation model Feature extraction Matrix decomposition multitemporal polarimetric SAR (PolSAR) Radarsat Representations Scattering scattering variation Spatial variations Transformers vision transformer (ViT) |
title | Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherence%20Matrix%20Power%20Model%20for%20Scattering%20Variation%20Representation%20in%20Multi-Temporal%20PolSAR%20Crop%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yin,%20Qiang&rft.date=2024&rft.volume=17&rft.spage=9797&rft.epage=9810&rft.pages=9797-9810&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3395689&rft_dat=%3Cproquest_ieee_%3E3056010323%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056010323&rft_id=info:pmid/&rft_ieee_id=10517372&rft_doaj_id=oai_doaj_org_article_531342485c354b7e9a93480a1809b8e2&rfr_iscdi=true |