Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification

The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.9797-9810
Hauptverfasser: Yin, Qiang, Gao, Li, Zhou, Yongsheng, Li, Yang, Zhang, Fan, Lopez-Martinez, Carlos, Hong, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9810
container_issue
container_start_page 9797
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Yin, Qiang
Gao, Li
Zhou, Yongsheng
Li, Yang
Zhang, Fan
Lopez-Martinez, Carlos
Hong, Wen
description The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.
doi_str_mv 10.1109/JSTARS.2024.3395689
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10517372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517372</ieee_id><doaj_id>oai_doaj_org_article_531342485c354b7e9a93480a1809b8e2</doaj_id><sourcerecordid>3056010323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</originalsourceid><addsrcrecordid>eNpNkUGP0zAQhS0EEqXwC-BgiXOK7bFj-1hFsCzaCtQWrpbjTBdX2ThrpwL-PdnNCnEazei97430CHnL2YZzZj98ORy3-8NGMCE3AFbVxj4jK8EVr7gC9ZysuAVbccnkS_KqlDNjtdAWVuS-ST8x4xCQ7vyU42_6Lf3CTHepw56eUqaH4KcJcxxu6Q-fo59iGugex4wFh2lZ40B3l36K1RHvxpR9P1P6w3ZPm5xG2vS-lHiK4VH8mrw4-b7gm6e5Jt8_fTw2n6ubr1fXzfamCqDsVOlOmJZrbjC03EjRBt9CbTqQrLWs09ZIa1uhRKtNbZkXoUMBGlXHTCd0DWtyvXC75M9uzPHO5z8u-egeDynfOp-nGHp0CjhIIY2ao2Wr0XoL0jDPDbOtmbFr8n5hjTndX7BM7pwueZjfd8BUzTgDAbMKFlXIqZSMp3-pnLmHntzSk3voyT31NLveLa6IiP85FNegBfwF9g-Ogg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056010323</pqid></control><display><type>article</type><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</creator><creatorcontrib>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</creatorcontrib><description>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3395689</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Coherence ; Coherent scattering ; Crop classification ; Crops ; Data models ; data representation model ; Feature extraction ; Matrix decomposition ; multitemporal polarimetric SAR (PolSAR) ; Radarsat ; Representations ; Scattering ; scattering variation ; Spatial variations ; Transformers ; vision transformer (ViT)</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9797-9810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</cites><orcidid>0000-0002-1366-9446 ; 0009-0009-0441-5012 ; 0000-0001-7261-7606 ; 0000-0002-1025-9812 ; 0009-0009-6927-7271 ; 0000-0002-2058-2373 ; 0000-0002-8413-4756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yin, Qiang</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><creatorcontrib>Hong, Wen</creatorcontrib><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</description><subject>Classification</subject><subject>Coherence</subject><subject>Coherent scattering</subject><subject>Crop classification</subject><subject>Crops</subject><subject>Data models</subject><subject>data representation model</subject><subject>Feature extraction</subject><subject>Matrix decomposition</subject><subject>multitemporal polarimetric SAR (PolSAR)</subject><subject>Radarsat</subject><subject>Representations</subject><subject>Scattering</subject><subject>scattering variation</subject><subject>Spatial variations</subject><subject>Transformers</subject><subject>vision transformer (ViT)</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUGP0zAQhS0EEqXwC-BgiXOK7bFj-1hFsCzaCtQWrpbjTBdX2ThrpwL-PdnNCnEazei97430CHnL2YZzZj98ORy3-8NGMCE3AFbVxj4jK8EVr7gC9ZysuAVbccnkS_KqlDNjtdAWVuS-ST8x4xCQ7vyU42_6Lf3CTHepw56eUqaH4KcJcxxu6Q-fo59iGugex4wFh2lZ40B3l36K1RHvxpR9P1P6w3ZPm5xG2vS-lHiK4VH8mrw4-b7gm6e5Jt8_fTw2n6ubr1fXzfamCqDsVOlOmJZrbjC03EjRBt9CbTqQrLWs09ZIa1uhRKtNbZkXoUMBGlXHTCd0DWtyvXC75M9uzPHO5z8u-egeDynfOp-nGHp0CjhIIY2ao2Wr0XoL0jDPDbOtmbFr8n5hjTndX7BM7pwueZjfd8BUzTgDAbMKFlXIqZSMp3-pnLmHntzSk3voyT31NLveLa6IiP85FNegBfwF9g-Ogg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yin, Qiang</creator><creator>Gao, Li</creator><creator>Zhou, Yongsheng</creator><creator>Li, Yang</creator><creator>Zhang, Fan</creator><creator>Lopez-Martinez, Carlos</creator><creator>Hong, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1366-9446</orcidid><orcidid>https://orcid.org/0009-0009-0441-5012</orcidid><orcidid>https://orcid.org/0000-0001-7261-7606</orcidid><orcidid>https://orcid.org/0000-0002-1025-9812</orcidid><orcidid>https://orcid.org/0009-0009-6927-7271</orcidid><orcidid>https://orcid.org/0000-0002-2058-2373</orcidid><orcidid>https://orcid.org/0000-0002-8413-4756</orcidid></search><sort><creationdate>2024</creationdate><title>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</title><author>Yin, Qiang ; Gao, Li ; Zhou, Yongsheng ; Li, Yang ; Zhang, Fan ; Lopez-Martinez, Carlos ; Hong, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7d28b1718ecb1842bcab368d340b90d798499b252b78690a2cde237e5d08d2763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Coherence</topic><topic>Coherent scattering</topic><topic>Crop classification</topic><topic>Crops</topic><topic>Data models</topic><topic>data representation model</topic><topic>Feature extraction</topic><topic>Matrix decomposition</topic><topic>multitemporal polarimetric SAR (PolSAR)</topic><topic>Radarsat</topic><topic>Representations</topic><topic>Scattering</topic><topic>scattering variation</topic><topic>Spatial variations</topic><topic>Transformers</topic><topic>vision transformer (ViT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qiang</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><creatorcontrib>Hong, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Qiang</au><au>Gao, Li</au><au>Zhou, Yongsheng</au><au>Li, Yang</au><au>Zhang, Fan</au><au>Lopez-Martinez, Carlos</au><au>Hong, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>9797</spage><epage>9810</epage><pages>9797-9810</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The multitemporal polarimetric SAR (PolSAR) data contains the scattering change information during the growth of crops. However, the current classification methods usually directly use the addition of features extracted at single-temporal or use the temporal and spatial variations of certain features, not really exploring the complete scattering variation information. The specific data representation models for multitemporal PolSAR data should combine time with polarimetry to characterize the scattering variations. However, the characterization and utilization of such kind of models are inadequate. In this article, we construct data representation model based on the power form of coherence matrix to comprehensively represent all kinds of scattering mechanism variation, which is full-rank positive semidefinite Hermitian matrix. We extract new time-variant scattering features and design vision transformer classifier accordingly for crop classification. Experiment results on RADARSAT-2 datasets show that the proposed power representation model outperforms other models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3395689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1366-9446</orcidid><orcidid>https://orcid.org/0009-0009-0441-5012</orcidid><orcidid>https://orcid.org/0000-0001-7261-7606</orcidid><orcidid>https://orcid.org/0000-0002-1025-9812</orcidid><orcidid>https://orcid.org/0009-0009-6927-7271</orcidid><orcidid>https://orcid.org/0000-0002-2058-2373</orcidid><orcidid>https://orcid.org/0000-0002-8413-4756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9797-9810
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_10517372
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification
Coherence
Coherent scattering
Crop classification
Crops
Data models
data representation model
Feature extraction
Matrix decomposition
multitemporal polarimetric SAR (PolSAR)
Radarsat
Representations
Scattering
scattering variation
Spatial variations
Transformers
vision transformer (ViT)
title Coherence Matrix Power Model for Scattering Variation Representation in Multi-Temporal PolSAR Crop Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherence%20Matrix%20Power%20Model%20for%20Scattering%20Variation%20Representation%20in%20Multi-Temporal%20PolSAR%20Crop%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yin,%20Qiang&rft.date=2024&rft.volume=17&rft.spage=9797&rft.epage=9810&rft.pages=9797-9810&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3395689&rft_dat=%3Cproquest_ieee_%3E3056010323%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056010323&rft_id=info:pmid/&rft_ieee_id=10517372&rft_doaj_id=oai_doaj_org_article_531342485c354b7e9a93480a1809b8e2&rfr_iscdi=true