Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN

This article presents the development and testing of lightweight and power-efficient CNN models for ectopic beat classification, tailored for a compact-sized ( 25\times 45 mm) ARM-based (STM32H7) AI module. Two custom lightweight architectures (LMUEBCNet and SEmbedNet) were introduced, and their pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-06, Vol.24 (12), p.19834-19844
Hauptverfasser: Xie, You-Liang, Lin, Xin-Rong, Lee, Cheng-Yang, Lin, Che-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19844
container_issue 12
container_start_page 19834
container_title IEEE sensors journal
container_volume 24
creator Xie, You-Liang
Lin, Xin-Rong
Lee, Cheng-Yang
Lin, Che-Wei
description This article presents the development and testing of lightweight and power-efficient CNN models for ectopic beat classification, tailored for a compact-sized ( 25\times 45 mm) ARM-based (STM32H7) AI module. Two custom lightweight architectures (LMUEBCNet and SEmbedNet) were introduced, and their performances benchmarked against conventional models (AlexNet and VGG19). A structural pruning method, filter pruning via the Taylor score, was employed for pretrained models' parameter optimizations. Further resizing the input image size to pixel-56/112 for the efficiency of the embedded system. Validation was conducted utilizing a combined electrocardiogram (ECG) simulator and the PhysioNet Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia ECG dataset, adhering to the ANSI/Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard. SEmbedNet with parameter size of 0.04 M and LMUEBCNet with 0.15 M parameters reported accuracy of 99.9%/97.6%. In comparison, the pruned models of VGG19 and AlexNet, which had parameter counts of 0.10 and 0.07 M, respectively, achieved accuracy of 96.7%/94.4%. Poststructural pruning, VGG19 and AlexNet models, saw reductions in parameters by thousands of times, with accuracy decreases of 2% to 5%. Notably, the proposed LMUEBCNet and SEmbedNet were vastly leaner by 930 and 320 times than VGG19 and AlexNet. The proposed ARM-based AI module integrated with custom lightweight CNN models offers superior accuracy-memory trade-offs with 0.04 M parameters, which is less than 1% of the size of conventional models. The AI module with compact size and a power consumption of only 0.4 W achieves a classification rate of 4.2 segments per second and 99.9% accuracy. The AI module shows the potential to transform ECG monitoring devices into ECG analyzers.
doi_str_mv 10.1109/JSEN.2024.3393469
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10517344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517344</ieee_id><sourcerecordid>3068175914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-52e96d08beff4a45fb2e9536aa077abbfeed3d917b6e56de8583bbf427a111403</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOKc_QPAh4HNn0iRN-zjr1Mk2xTnwraTtzczompmkiH_A323r9uDLvZfDOefCFwSXBI8IwenN03KyGEU4YiNKU8ri9CgYEM6TkAiWHPc3xSGj4v00OHNugzFJBReD4OcOnF43SDYVmm53NWyh8dJr0yCjOhWNX-fhrXRQofEUzU3V1oCUsWhSerPTJboF6VFWS-e00uU-uXK6WaOsdd5s_5qX3ralb62s0Yttm65sptcf_gv6ibLF4jw4UbJ2cHHYw2B1P3nLHsPZ88M0G8_CMkpSH_II0rjCSQFKMcm4KjqB01hKLIQsCgVQ0SolooiBxxUkPKGdyiIhCSEM02Fwve_dWfPZgvP5xrS26V7mFMcJETwlrHORvau0xjkLKt9ZvZX2Oyc473HnPe68x50fcHeZq31GA8A_PyeCMkZ_AQdhfPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175914</pqid></control><display><type>article</type><title>Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, You-Liang ; Lin, Xin-Rong ; Lee, Cheng-Yang ; Lin, Che-Wei</creator><creatorcontrib>Xie, You-Liang ; Lin, Xin-Rong ; Lee, Cheng-Yang ; Lin, Che-Wei</creatorcontrib><description>This article presents the development and testing of lightweight and power-efficient CNN models for ectopic beat classification, tailored for a compact-sized (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;25\times 45 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm) ARM-based (STM32H7) AI module. Two custom lightweight architectures (LMUEBCNet and SEmbedNet) were introduced, and their performances benchmarked against conventional models (AlexNet and VGG19). A structural pruning method, filter pruning via the Taylor score, was employed for pretrained models' parameter optimizations. Further resizing the input image size to pixel-56/112 for the efficiency of the embedded system. Validation was conducted utilizing a combined electrocardiogram (ECG) simulator and the PhysioNet Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia ECG dataset, adhering to the ANSI/Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard. SEmbedNet with parameter size of 0.04 M and LMUEBCNet with 0.15 M parameters reported accuracy of 99.9%/97.6%. In comparison, the pruned models of VGG19 and AlexNet, which had parameter counts of 0.10 and 0.07 M, respectively, achieved accuracy of 96.7%/94.4%. Poststructural pruning, VGG19 and AlexNet models, saw reductions in parameters by thousands of times, with accuracy decreases of 2% to 5%. Notably, the proposed LMUEBCNet and SEmbedNet were vastly leaner by 930 and 320 times than VGG19 and AlexNet. The proposed ARM-based AI module integrated with custom lightweight CNN models offers superior accuracy-memory trade-offs with 0.04 M parameters, which is less than 1% of the size of conventional models. The AI module with compact size and a power consumption of only 0.4 W achieves a classification rate of 4.2 segments per second and 99.9% accuracy. The AI module shows the potential to transform ECG monitoring devices into ECG analyzers.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3393469</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Analyzers ; Arrhythmia ; Artificial intelligence ; Biological system modeling ; Classification ; classification algorithms ; convolutional neural networks ; deep learning (DL) ; Electrocardiography ; embedded computing ; Embedded systems ; Heart rate variability ; Lightweight ; Modules ; Parameters ; Power consumption ; Power management ; Pregnancy ; Pruning ; Weight reduction</subject><ispartof>IEEE sensors journal, 2024-06, Vol.24 (12), p.19834-19844</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-52e96d08beff4a45fb2e9536aa077abbfeed3d917b6e56de8583bbf427a111403</cites><orcidid>0000-0002-2941-6697 ; 0000-0002-1894-1189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10517344$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Xie, You-Liang</creatorcontrib><creatorcontrib>Lin, Xin-Rong</creatorcontrib><creatorcontrib>Lee, Cheng-Yang</creatorcontrib><creatorcontrib>Lin, Che-Wei</creatorcontrib><title>Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article presents the development and testing of lightweight and power-efficient CNN models for ectopic beat classification, tailored for a compact-sized (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;25\times 45 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm) ARM-based (STM32H7) AI module. Two custom lightweight architectures (LMUEBCNet and SEmbedNet) were introduced, and their performances benchmarked against conventional models (AlexNet and VGG19). A structural pruning method, filter pruning via the Taylor score, was employed for pretrained models' parameter optimizations. Further resizing the input image size to pixel-56/112 for the efficiency of the embedded system. Validation was conducted utilizing a combined electrocardiogram (ECG) simulator and the PhysioNet Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia ECG dataset, adhering to the ANSI/Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard. SEmbedNet with parameter size of 0.04 M and LMUEBCNet with 0.15 M parameters reported accuracy of 99.9%/97.6%. In comparison, the pruned models of VGG19 and AlexNet, which had parameter counts of 0.10 and 0.07 M, respectively, achieved accuracy of 96.7%/94.4%. Poststructural pruning, VGG19 and AlexNet models, saw reductions in parameters by thousands of times, with accuracy decreases of 2% to 5%. Notably, the proposed LMUEBCNet and SEmbedNet were vastly leaner by 930 and 320 times than VGG19 and AlexNet. The proposed ARM-based AI module integrated with custom lightweight CNN models offers superior accuracy-memory trade-offs with 0.04 M parameters, which is less than 1% of the size of conventional models. The AI module with compact size and a power consumption of only 0.4 W achieves a classification rate of 4.2 segments per second and 99.9% accuracy. The AI module shows the potential to transform ECG monitoring devices into ECG analyzers.</description><subject>Accuracy</subject><subject>Analyzers</subject><subject>Arrhythmia</subject><subject>Artificial intelligence</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>classification algorithms</subject><subject>convolutional neural networks</subject><subject>deep learning (DL)</subject><subject>Electrocardiography</subject><subject>embedded computing</subject><subject>Embedded systems</subject><subject>Heart rate variability</subject><subject>Lightweight</subject><subject>Modules</subject><subject>Parameters</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Pregnancy</subject><subject>Pruning</subject><subject>Weight reduction</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYsoOKc_QPAh4HNn0iRN-zjr1Mk2xTnwraTtzczompmkiH_A323r9uDLvZfDOefCFwSXBI8IwenN03KyGEU4YiNKU8ri9CgYEM6TkAiWHPc3xSGj4v00OHNugzFJBReD4OcOnF43SDYVmm53NWyh8dJr0yCjOhWNX-fhrXRQofEUzU3V1oCUsWhSerPTJboF6VFWS-e00uU-uXK6WaOsdd5s_5qX3ralb62s0Yttm65sptcf_gv6ibLF4jw4UbJ2cHHYw2B1P3nLHsPZ88M0G8_CMkpSH_II0rjCSQFKMcm4KjqB01hKLIQsCgVQ0SolooiBxxUkPKGdyiIhCSEM02Fwve_dWfPZgvP5xrS26V7mFMcJETwlrHORvau0xjkLKt9ZvZX2Oyc473HnPe68x50fcHeZq31GA8A_PyeCMkZ_AQdhfPk</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Xie, You-Liang</creator><creator>Lin, Xin-Rong</creator><creator>Lee, Cheng-Yang</creator><creator>Lin, Che-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2941-6697</orcidid><orcidid>https://orcid.org/0000-0002-1894-1189</orcidid></search><sort><creationdate>20240615</creationdate><title>Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN</title><author>Xie, You-Liang ; Lin, Xin-Rong ; Lee, Cheng-Yang ; Lin, Che-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-52e96d08beff4a45fb2e9536aa077abbfeed3d917b6e56de8583bbf427a111403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analyzers</topic><topic>Arrhythmia</topic><topic>Artificial intelligence</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>classification algorithms</topic><topic>convolutional neural networks</topic><topic>deep learning (DL)</topic><topic>Electrocardiography</topic><topic>embedded computing</topic><topic>Embedded systems</topic><topic>Heart rate variability</topic><topic>Lightweight</topic><topic>Modules</topic><topic>Parameters</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Pregnancy</topic><topic>Pruning</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, You-Liang</creatorcontrib><creatorcontrib>Lin, Xin-Rong</creatorcontrib><creatorcontrib>Lee, Cheng-Yang</creatorcontrib><creatorcontrib>Lin, Che-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, You-Liang</au><au>Lin, Xin-Rong</au><au>Lee, Cheng-Yang</au><au>Lin, Che-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-06-15</date><risdate>2024</risdate><volume>24</volume><issue>12</issue><spage>19834</spage><epage>19844</epage><pages>19834-19844</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article presents the development and testing of lightweight and power-efficient CNN models for ectopic beat classification, tailored for a compact-sized (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;25\times 45 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm) ARM-based (STM32H7) AI module. Two custom lightweight architectures (LMUEBCNet and SEmbedNet) were introduced, and their performances benchmarked against conventional models (AlexNet and VGG19). A structural pruning method, filter pruning via the Taylor score, was employed for pretrained models' parameter optimizations. Further resizing the input image size to pixel-56/112 for the efficiency of the embedded system. Validation was conducted utilizing a combined electrocardiogram (ECG) simulator and the PhysioNet Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia ECG dataset, adhering to the ANSI/Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard. SEmbedNet with parameter size of 0.04 M and LMUEBCNet with 0.15 M parameters reported accuracy of 99.9%/97.6%. In comparison, the pruned models of VGG19 and AlexNet, which had parameter counts of 0.10 and 0.07 M, respectively, achieved accuracy of 96.7%/94.4%. Poststructural pruning, VGG19 and AlexNet models, saw reductions in parameters by thousands of times, with accuracy decreases of 2% to 5%. Notably, the proposed LMUEBCNet and SEmbedNet were vastly leaner by 930 and 320 times than VGG19 and AlexNet. The proposed ARM-based AI module integrated with custom lightweight CNN models offers superior accuracy-memory trade-offs with 0.04 M parameters, which is less than 1% of the size of conventional models. The AI module with compact size and a power consumption of only 0.4 W achieves a classification rate of 4.2 segments per second and 99.9% accuracy. The AI module shows the potential to transform ECG monitoring devices into ECG analyzers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3393469</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2941-6697</orcidid><orcidid>https://orcid.org/0000-0002-1894-1189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-06, Vol.24 (12), p.19834-19844
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10517344
source IEEE Electronic Library (IEL)
subjects Accuracy
Analyzers
Arrhythmia
Artificial intelligence
Biological system modeling
Classification
classification algorithms
convolutional neural networks
deep learning (DL)
Electrocardiography
embedded computing
Embedded systems
Heart rate variability
Lightweight
Modules
Parameters
Power consumption
Power management
Pregnancy
Pruning
Weight reduction
title Design and Implementation of an ARM-Based AI Module for Ectopic Beat Classification Using Custom and Structural Pruned Lightweight CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20an%20ARM-Based%20AI%20Module%20for%20Ectopic%20Beat%20Classification%20Using%20Custom%20and%20Structural%20Pruned%20Lightweight%20CNN&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xie,%20You-Liang&rft.date=2024-06-15&rft.volume=24&rft.issue=12&rft.spage=19834&rft.epage=19844&rft.pages=19834-19844&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3393469&rft_dat=%3Cproquest_ieee_%3E3068175914%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068175914&rft_id=info:pmid/&rft_ieee_id=10517344&rfr_iscdi=true