Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach
Despite promising results reported in the literature for mental workload assessment using electroencephalography (EEG), most of the proposed methods rely on employing multiple EEG channels, limiting their practicality. However, the advent of wearable EEG technology provides the possibility of mental...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Beiramvand, Matin Shahbakhti, Mohammad Karttunen, Nina Koivula, Reijo Turunen, Jari Lipping, Tarmo |
description | Despite promising results reported in the literature for mental workload assessment using electroencephalography (EEG), most of the proposed methods rely on employing multiple EEG channels, limiting their practicality. However, the advent of wearable EEG technology provides the possibility of mental workload assessment for real-life applications. Yet, a few studies that considered consumer-oriented EEG headsets for mental workload assessment only used a single database for validating the proposed methods, overlooking the potential for portability. In this research, we studied 60 recordings of participants playing a three-level n-back game, utilizing data from two EEG devices, Enobio and Muse, with distinctive characteristics such as sampling rate and channel configuration. Following the denoising of the EEG signals, we segmented the signals and applied the discrete wavelet transform (DWT) to decompose them into subbands. Then, we extracted Shannon entropy (SE) and wavelet log energy (WLE) features from all subbands. Subsequently, we fed the extracted features into five classifiers: support vector machine (SVM), k-nearest neighbors (kNNs), multilayer perceptron (MLP), AdaBoost, and the transformer network (TN). In comparing the results across all classifiers, the TN demonstrated superiority by achieving highest mean accuracy for Database M (88%) and Database E (85%). Given the consistent outcomes achieved with the TN classifier across both databases and utilizing a three-level n-back game, our findings indicate that the proposed method holds promise for real-life applications. |
doi_str_mv | 10.1109/TIM.2024.3395312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10510890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510890</ieee_id><sourcerecordid>3053299264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-bfe12d1d55ef880d130924ad95b43b0a9e4c080ecc86d9a0ddecb675c841fe303</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYjePXho4nn42q7b6o0QRBJQDxCPS1nfZMja2Q6J_vUO8eDpe3jfH3kfQq4ZDBgDdbeYzgcceDwQQknB-AnpMSnTSCUJPyU9AJZFKpbJObkIYQMAaRKnPfI5DAFDqNG21JV03qne0lfn37dOG7oMlX2jmi68tqF0vkZPn7Ddd3eqraGLvaMvHkvvfnPj8YSO1tpa3IZ7OrR0aRvtdY0t-uobDR02jXe6WF-Ss1JvA179aZ8sH8aL0WM0e55MR8NZVPAsbaNViYwbZqTEMsvAMAGKx9oouYrFCrTCuIAMsCiyxCgNxmCxSlJZZDErUYDok9tjbzf7scPQ5hu387abzAVIwZXiSdy54OgqvAuheydvfFVr_5UzyA90845ufqCb_9HtIjfHSIWI_-ySQaZA_AAx6XdB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053299264</pqid></control><display><type>article</type><title>Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Beiramvand, Matin ; Shahbakhti, Mohammad ; Karttunen, Nina ; Koivula, Reijo ; Turunen, Jari ; Lipping, Tarmo</creator><creatorcontrib>Beiramvand, Matin ; Shahbakhti, Mohammad ; Karttunen, Nina ; Koivula, Reijo ; Turunen, Jari ; Lipping, Tarmo</creatorcontrib><description>Despite promising results reported in the literature for mental workload assessment using electroencephalography (EEG), most of the proposed methods rely on employing multiple EEG channels, limiting their practicality. However, the advent of wearable EEG technology provides the possibility of mental workload assessment for real-life applications. Yet, a few studies that considered consumer-oriented EEG headsets for mental workload assessment only used a single database for validating the proposed methods, overlooking the potential for portability. In this research, we studied 60 recordings of participants playing a three-level n-back game, utilizing data from two EEG devices, Enobio and Muse, with distinctive characteristics such as sampling rate and channel configuration. Following the denoising of the EEG signals, we segmented the signals and applied the discrete wavelet transform (DWT) to decompose them into subbands. Then, we extracted Shannon entropy (SE) and wavelet log energy (WLE) features from all subbands. Subsequently, we fed the extracted features into five classifiers: support vector machine (SVM), k-nearest neighbors (kNNs), multilayer perceptron (MLP), AdaBoost, and the transformer network (TN). In comparing the results across all classifiers, the TN demonstrated superiority by achieving highest mean accuracy for Database M (88%) and Database E (85%). Given the consistent outcomes achieved with the TN classifier across both databases and utilizing a three-level n-back game, our findings indicate that the proposed method holds promise for real-life applications.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3395312</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical monitoring ; Channels ; Classifiers ; Discrete Wavelet Transform ; Electroencephalography ; Energy ; entropy ; Entropy (Information theory) ; Feature extraction ; Games ; mental workload ; Multilayer perceptrons ; Recording ; Support vector machines ; Task analysis ; transformer network (TN) ; Transformers ; Wavelet transforms ; wearable EEG device ; Workload ; Workloads</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-bfe12d1d55ef880d130924ad95b43b0a9e4c080ecc86d9a0ddecb675c841fe303</cites><orcidid>0000-0001-6625-7923 ; 0009-0004-2075-1888 ; 0000-0002-5112-2425 ; 0009-0007-7476-3018 ; 0000-0003-2818-8036 ; 0000-0001-9942-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510890$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Beiramvand, Matin</creatorcontrib><creatorcontrib>Shahbakhti, Mohammad</creatorcontrib><creatorcontrib>Karttunen, Nina</creatorcontrib><creatorcontrib>Koivula, Reijo</creatorcontrib><creatorcontrib>Turunen, Jari</creatorcontrib><creatorcontrib>Lipping, Tarmo</creatorcontrib><title>Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Despite promising results reported in the literature for mental workload assessment using electroencephalography (EEG), most of the proposed methods rely on employing multiple EEG channels, limiting their practicality. However, the advent of wearable EEG technology provides the possibility of mental workload assessment for real-life applications. Yet, a few studies that considered consumer-oriented EEG headsets for mental workload assessment only used a single database for validating the proposed methods, overlooking the potential for portability. In this research, we studied 60 recordings of participants playing a three-level n-back game, utilizing data from two EEG devices, Enobio and Muse, with distinctive characteristics such as sampling rate and channel configuration. Following the denoising of the EEG signals, we segmented the signals and applied the discrete wavelet transform (DWT) to decompose them into subbands. Then, we extracted Shannon entropy (SE) and wavelet log energy (WLE) features from all subbands. Subsequently, we fed the extracted features into five classifiers: support vector machine (SVM), k-nearest neighbors (kNNs), multilayer perceptron (MLP), AdaBoost, and the transformer network (TN). In comparing the results across all classifiers, the TN demonstrated superiority by achieving highest mean accuracy for Database M (88%) and Database E (85%). Given the consistent outcomes achieved with the TN classifier across both databases and utilizing a three-level n-back game, our findings indicate that the proposed method holds promise for real-life applications.</description><subject>Biomedical monitoring</subject><subject>Channels</subject><subject>Classifiers</subject><subject>Discrete Wavelet Transform</subject><subject>Electroencephalography</subject><subject>Energy</subject><subject>entropy</subject><subject>Entropy (Information theory)</subject><subject>Feature extraction</subject><subject>Games</subject><subject>mental workload</subject><subject>Multilayer perceptrons</subject><subject>Recording</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>transformer network (TN)</subject><subject>Transformers</subject><subject>Wavelet transforms</subject><subject>wearable EEG device</subject><subject>Workload</subject><subject>Workloads</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAUxxujiYjePXho4nn42q7b6o0QRBJQDxCPS1nfZMja2Q6J_vUO8eDpe3jfH3kfQq4ZDBgDdbeYzgcceDwQQknB-AnpMSnTSCUJPyU9AJZFKpbJObkIYQMAaRKnPfI5DAFDqNG21JV03qne0lfn37dOG7oMlX2jmi68tqF0vkZPn7Ddd3eqraGLvaMvHkvvfnPj8YSO1tpa3IZ7OrR0aRvtdY0t-uobDR02jXe6WF-Ss1JvA179aZ8sH8aL0WM0e55MR8NZVPAsbaNViYwbZqTEMsvAMAGKx9oouYrFCrTCuIAMsCiyxCgNxmCxSlJZZDErUYDok9tjbzf7scPQ5hu387abzAVIwZXiSdy54OgqvAuheydvfFVr_5UzyA90845ufqCb_9HtIjfHSIWI_-ySQaZA_AAx6XdB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Beiramvand, Matin</creator><creator>Shahbakhti, Mohammad</creator><creator>Karttunen, Nina</creator><creator>Koivula, Reijo</creator><creator>Turunen, Jari</creator><creator>Lipping, Tarmo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6625-7923</orcidid><orcidid>https://orcid.org/0009-0004-2075-1888</orcidid><orcidid>https://orcid.org/0000-0002-5112-2425</orcidid><orcidid>https://orcid.org/0009-0007-7476-3018</orcidid><orcidid>https://orcid.org/0000-0003-2818-8036</orcidid><orcidid>https://orcid.org/0000-0001-9942-5559</orcidid></search><sort><creationdate>2024</creationdate><title>Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach</title><author>Beiramvand, Matin ; Shahbakhti, Mohammad ; Karttunen, Nina ; Koivula, Reijo ; Turunen, Jari ; Lipping, Tarmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-bfe12d1d55ef880d130924ad95b43b0a9e4c080ecc86d9a0ddecb675c841fe303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical monitoring</topic><topic>Channels</topic><topic>Classifiers</topic><topic>Discrete Wavelet Transform</topic><topic>Electroencephalography</topic><topic>Energy</topic><topic>entropy</topic><topic>Entropy (Information theory)</topic><topic>Feature extraction</topic><topic>Games</topic><topic>mental workload</topic><topic>Multilayer perceptrons</topic><topic>Recording</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>transformer network (TN)</topic><topic>Transformers</topic><topic>Wavelet transforms</topic><topic>wearable EEG device</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beiramvand, Matin</creatorcontrib><creatorcontrib>Shahbakhti, Mohammad</creatorcontrib><creatorcontrib>Karttunen, Nina</creatorcontrib><creatorcontrib>Koivula, Reijo</creatorcontrib><creatorcontrib>Turunen, Jari</creatorcontrib><creatorcontrib>Lipping, Tarmo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beiramvand, Matin</au><au>Shahbakhti, Mohammad</au><au>Karttunen, Nina</au><au>Koivula, Reijo</au><au>Turunen, Jari</au><au>Lipping, Tarmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Despite promising results reported in the literature for mental workload assessment using electroencephalography (EEG), most of the proposed methods rely on employing multiple EEG channels, limiting their practicality. However, the advent of wearable EEG technology provides the possibility of mental workload assessment for real-life applications. Yet, a few studies that considered consumer-oriented EEG headsets for mental workload assessment only used a single database for validating the proposed methods, overlooking the potential for portability. In this research, we studied 60 recordings of participants playing a three-level n-back game, utilizing data from two EEG devices, Enobio and Muse, with distinctive characteristics such as sampling rate and channel configuration. Following the denoising of the EEG signals, we segmented the signals and applied the discrete wavelet transform (DWT) to decompose them into subbands. Then, we extracted Shannon entropy (SE) and wavelet log energy (WLE) features from all subbands. Subsequently, we fed the extracted features into five classifiers: support vector machine (SVM), k-nearest neighbors (kNNs), multilayer perceptron (MLP), AdaBoost, and the transformer network (TN). In comparing the results across all classifiers, the TN demonstrated superiority by achieving highest mean accuracy for Database M (88%) and Database E (85%). Given the consistent outcomes achieved with the TN classifier across both databases and utilizing a three-level n-back game, our findings indicate that the proposed method holds promise for real-life applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3395312</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6625-7923</orcidid><orcidid>https://orcid.org/0009-0004-2075-1888</orcidid><orcidid>https://orcid.org/0000-0002-5112-2425</orcidid><orcidid>https://orcid.org/0009-0007-7476-3018</orcidid><orcidid>https://orcid.org/0000-0003-2818-8036</orcidid><orcidid>https://orcid.org/0000-0001-9942-5559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-10 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10510890 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical monitoring Channels Classifiers Discrete Wavelet Transform Electroencephalography Energy entropy Entropy (Information theory) Feature extraction Games mental workload Multilayer perceptrons Recording Support vector machines Task analysis transformer network (TN) Transformers Wavelet transforms wearable EEG device Workload Workloads |
title | Assessment of Mental Workload Using a Transformer Network and Two Prefrontal EEG Channels: An Unparameterized Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Mental%20Workload%20Using%20a%20Transformer%20Network%20and%20Two%20Prefrontal%20EEG%20Channels:%20An%20Unparameterized%20Approach&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Beiramvand,%20Matin&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3395312&rft_dat=%3Cproquest_ieee_%3E3053299264%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053299264&rft_id=info:pmid/&rft_ieee_id=10510890&rfr_iscdi=true |