Anisotropic Scale-Invariant Ellipse Detection

Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024-01, Vol.33, p.1-1
Hauptverfasser: Wang, Zikai, Zhong, Baojiang, Ma, Kai-Kuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 33
creator Wang, Zikai
Zhong, Baojiang
Ma, Kai-Kuang
description Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.
doi_str_mv 10.1109/TIP.2024.3392481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10510212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510212</ieee_id><sourcerecordid>3049723522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bfb2be6a9baa4e5eff740705a7294c4a55a54b4f9ef0123d47772e118f2ba24e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvHkQKXrxsnXw1m2OpVQsFBes5ZLcTSNnurslW8N-b2iriYZg5PPMy8xBySWFEKei75fxlxICJEeeaiZwekT7VgmYAgh2nGaTKFBW6R85iXANQIen4lPR4Ps65Aton2aT2selC0_py-FraCrN5_WGDt3U3nFWVbyMO77HDsvNNfU5OnK0iXhz6gLw9zJbTp2zx_DifThZZyYF2WeEKVuDY6sJagRKdUwIUSKuYFqWwUlopCuE0OqCMr4RSiiGluWOFZQL5gNzuc9vQvG8xdmbjY4lVZWtsttFwEFoxLhlL6M0_dN1sQ52uS5SEVPybgj1VhibGgM60wW9s-DQUzE6lSSrNTqU5qEwr14fgbbHB1e_Cj7sEXO0Bj4h_8iQFlr76Alljdbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050305322</pqid></control><display><type>article</type><title>Anisotropic Scale-Invariant Ellipse Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zikai ; Zhong, Baojiang ; Ma, Kai-Kuang</creator><creatorcontrib>Wang, Zikai ; Zhong, Baojiang ; Ma, Kai-Kuang</creatorcontrib><description>Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3392481</identifier><identifier>PMID: 38683701</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Aerospace electronics ; Algorithms ; Anisotropic ; Anisotropic magnetoresistance ; Anisotropic scale-invariant ; Anisotropy ; Detectors ; distance measure ; ellipse fitting ; Elliptic fitting ; Ellipticity ; Extraterrestrial measurements ; Fitting ; homologous similarity ; Image analysis ; Image edge detection ; Invariants ; least squares ; Pharmacists</subject><ispartof>IEEE transactions on image processing, 2024-01, Vol.33, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-bfb2be6a9baa4e5eff740705a7294c4a55a54b4f9ef0123d47772e118f2ba24e3</cites><orcidid>0000-0002-9899-524X ; 0000-0003-2932-5709 ; 0000-0003-3193-5709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10510212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38683701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zikai</creatorcontrib><creatorcontrib>Zhong, Baojiang</creatorcontrib><creatorcontrib>Ma, Kai-Kuang</creatorcontrib><title>Anisotropic Scale-Invariant Ellipse Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.</description><subject>Accuracy</subject><subject>Aerospace electronics</subject><subject>Algorithms</subject><subject>Anisotropic</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropic scale-invariant</subject><subject>Anisotropy</subject><subject>Detectors</subject><subject>distance measure</subject><subject>ellipse fitting</subject><subject>Elliptic fitting</subject><subject>Ellipticity</subject><subject>Extraterrestrial measurements</subject><subject>Fitting</subject><subject>homologous similarity</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Invariants</subject><subject>least squares</subject><subject>Pharmacists</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlbvHkQKXrxsnXw1m2OpVQsFBes5ZLcTSNnurslW8N-b2iriYZg5PPMy8xBySWFEKei75fxlxICJEeeaiZwekT7VgmYAgh2nGaTKFBW6R85iXANQIen4lPR4Ps65Aton2aT2selC0_py-FraCrN5_WGDt3U3nFWVbyMO77HDsvNNfU5OnK0iXhz6gLw9zJbTp2zx_DifThZZyYF2WeEKVuDY6sJagRKdUwIUSKuYFqWwUlopCuE0OqCMr4RSiiGluWOFZQL5gNzuc9vQvG8xdmbjY4lVZWtsttFwEFoxLhlL6M0_dN1sQ52uS5SEVPybgj1VhibGgM60wW9s-DQUzE6lSSrNTqU5qEwr14fgbbHB1e_Cj7sEXO0Bj4h_8iQFlr76Alljdbc</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Wang, Zikai</creator><creator>Zhong, Baojiang</creator><creator>Ma, Kai-Kuang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9899-524X</orcidid><orcidid>https://orcid.org/0000-0003-2932-5709</orcidid><orcidid>https://orcid.org/0000-0003-3193-5709</orcidid></search><sort><creationdate>20240101</creationdate><title>Anisotropic Scale-Invariant Ellipse Detection</title><author>Wang, Zikai ; Zhong, Baojiang ; Ma, Kai-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bfb2be6a9baa4e5eff740705a7294c4a55a54b4f9ef0123d47772e118f2ba24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aerospace electronics</topic><topic>Algorithms</topic><topic>Anisotropic</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropic scale-invariant</topic><topic>Anisotropy</topic><topic>Detectors</topic><topic>distance measure</topic><topic>ellipse fitting</topic><topic>Elliptic fitting</topic><topic>Ellipticity</topic><topic>Extraterrestrial measurements</topic><topic>Fitting</topic><topic>homologous similarity</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Invariants</topic><topic>least squares</topic><topic>Pharmacists</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zikai</creatorcontrib><creatorcontrib>Zhong, Baojiang</creatorcontrib><creatorcontrib>Ma, Kai-Kuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zikai</au><au>Zhong, Baojiang</au><au>Ma, Kai-Kuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Scale-Invariant Ellipse Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38683701</pmid><doi>10.1109/TIP.2024.3392481</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9899-524X</orcidid><orcidid>https://orcid.org/0000-0003-2932-5709</orcidid><orcidid>https://orcid.org/0000-0003-3193-5709</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024-01, Vol.33, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_10510212
source IEEE Electronic Library (IEL)
subjects Accuracy
Aerospace electronics
Algorithms
Anisotropic
Anisotropic magnetoresistance
Anisotropic scale-invariant
Anisotropy
Detectors
distance measure
ellipse fitting
Elliptic fitting
Ellipticity
Extraterrestrial measurements
Fitting
homologous similarity
Image analysis
Image edge detection
Invariants
least squares
Pharmacists
title Anisotropic Scale-Invariant Ellipse Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Scale-Invariant%20Ellipse%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Zikai&rft.date=2024-01-01&rft.volume=33&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3392481&rft_dat=%3Cproquest_RIE%3E3049723522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050305322&rft_id=info:pmid/38683701&rft_ieee_id=10510212&rfr_iscdi=true