PSFL: Ensuring Data Privacy and Model Security for Federated Learning
The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoni...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-08, Vol.11 (15), p.26234-26252 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26252 |
---|---|
container_issue | 15 |
container_start_page | 26234 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Li, Jing Tian, Youliang Zhou, Zhou Xiang, Axin Wang, Shuai Xiong, Jinbo |
description | The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0. |
doi_str_mv | 10.1109/JIOT.2024.3394168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10509572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10509572</ieee_id><sourcerecordid>3084060624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gOAh4Hnr5Gs_vElttbLSQus5ZJNZ2VJ3a7IV-u9NaQ89zcD7PjPwEHLPYMwYFE8f88V6zIHLsRCFZGl-RQZc8CyRacqvL_ZbMgphAwARU6xIB2S6XM3KZzptw9437Td9Nb2hS9_8GXugpnX0s3O4pSu0Me8PtO48naFDb3p0tETj24jdkZvabAOOznNIvmbT9eQ9KRdv88lLmVheyD7JKiMsq4BZZMxY52pgmVFYq5TlxmJuUHCpCgdZVlWsUDWXEmLuUCDnVgzJ4-nuzne_ewy93nR738aXWkAuIYWUy9hip5b1XQgea73zzY_xB81AH4XpozB9FKbPwiLzcGIaRLzoKyhUxsU_XORl0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084060624</pqid></control><display><type>article</type><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</creator><creatorcontrib>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</creatorcontrib><description>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3394168</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Blockchain ; Computational modeling ; Data models ; Data privacy ; Digital signatures ; Effectiveness ; Federated learning ; federated learning (FL) ; Fourth Industrial Revolution ; Industry 4.0 ; Machine learning ; model security ; Poisoning ; Privacy ; Protection ; Security</subject><ispartof>IEEE internet of things journal, 2024-08, Vol.11 (15), p.26234-26252</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</citedby><cites>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</cites><orcidid>0009-0000-1655-2254 ; 0000-0002-5974-1570 ; 0000-0001-5436-7674 ; 0009-0001-3395-8181 ; 0000-0001-9985-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10509572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10509572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Tian, Youliang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Xiang, Axin</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Xiong, Jinbo</creatorcontrib><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</description><subject>Algorithms</subject><subject>Blockchain</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Digital signatures</subject><subject>Effectiveness</subject><subject>Federated learning</subject><subject>federated learning (FL)</subject><subject>Fourth Industrial Revolution</subject><subject>Industry 4.0</subject><subject>Machine learning</subject><subject>model security</subject><subject>Poisoning</subject><subject>Privacy</subject><subject>Protection</subject><subject>Security</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gOAh4Hnr5Gs_vElttbLSQus5ZJNZ2VJ3a7IV-u9NaQ89zcD7PjPwEHLPYMwYFE8f88V6zIHLsRCFZGl-RQZc8CyRacqvL_ZbMgphAwARU6xIB2S6XM3KZzptw9437Td9Nb2hS9_8GXugpnX0s3O4pSu0Me8PtO48naFDb3p0tETj24jdkZvabAOOznNIvmbT9eQ9KRdv88lLmVheyD7JKiMsq4BZZMxY52pgmVFYq5TlxmJuUHCpCgdZVlWsUDWXEmLuUCDnVgzJ4-nuzne_ewy93nR738aXWkAuIYWUy9hip5b1XQgea73zzY_xB81AH4XpozB9FKbPwiLzcGIaRLzoKyhUxsU_XORl0Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Li, Jing</creator><creator>Tian, Youliang</creator><creator>Zhou, Zhou</creator><creator>Xiang, Axin</creator><creator>Wang, Shuai</creator><creator>Xiong, Jinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-1655-2254</orcidid><orcidid>https://orcid.org/0000-0002-5974-1570</orcidid><orcidid>https://orcid.org/0000-0001-5436-7674</orcidid><orcidid>https://orcid.org/0009-0001-3395-8181</orcidid><orcidid>https://orcid.org/0000-0001-9985-1953</orcidid></search><sort><creationdate>20240801</creationdate><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><author>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blockchain</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Digital signatures</topic><topic>Effectiveness</topic><topic>Federated learning</topic><topic>federated learning (FL)</topic><topic>Fourth Industrial Revolution</topic><topic>Industry 4.0</topic><topic>Machine learning</topic><topic>model security</topic><topic>Poisoning</topic><topic>Privacy</topic><topic>Protection</topic><topic>Security</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Tian, Youliang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Xiang, Axin</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Xiong, Jinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jing</au><au>Tian, Youliang</au><au>Zhou, Zhou</au><au>Xiang, Axin</au><au>Wang, Shuai</au><au>Xiong, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>11</volume><issue>15</issue><spage>26234</spage><epage>26252</epage><pages>26234-26252</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3394168</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0000-1655-2254</orcidid><orcidid>https://orcid.org/0000-0002-5974-1570</orcidid><orcidid>https://orcid.org/0000-0001-5436-7674</orcidid><orcidid>https://orcid.org/0009-0001-3395-8181</orcidid><orcidid>https://orcid.org/0000-0001-9985-1953</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-08, Vol.11 (15), p.26234-26252 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10509572 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Blockchain Computational modeling Data models Data privacy Digital signatures Effectiveness Federated learning federated learning (FL) Fourth Industrial Revolution Industry 4.0 Machine learning model security Poisoning Privacy Protection Security |
title | PSFL: Ensuring Data Privacy and Model Security for Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSFL:%20Ensuring%20Data%20Privacy%20and%20Model%20Security%20for%20Federated%20Learning&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Jing&rft.date=2024-08-01&rft.volume=11&rft.issue=15&rft.spage=26234&rft.epage=26252&rft.pages=26234-26252&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3394168&rft_dat=%3Cproquest_RIE%3E3084060624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084060624&rft_id=info:pmid/&rft_ieee_id=10509572&rfr_iscdi=true |