PSFL: Ensuring Data Privacy and Model Security for Federated Learning

The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-08, Vol.11 (15), p.26234-26252
Hauptverfasser: Li, Jing, Tian, Youliang, Zhou, Zhou, Xiang, Axin, Wang, Shuai, Xiong, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26252
container_issue 15
container_start_page 26234
container_title IEEE internet of things journal
container_volume 11
creator Li, Jing
Tian, Youliang
Zhou, Zhou
Xiang, Axin
Wang, Shuai
Xiong, Jinbo
description The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.
doi_str_mv 10.1109/JIOT.2024.3394168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10509572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10509572</ieee_id><sourcerecordid>3084060624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gOAh4Hnr5Gs_vElttbLSQus5ZJNZ2VJ3a7IV-u9NaQ89zcD7PjPwEHLPYMwYFE8f88V6zIHLsRCFZGl-RQZc8CyRacqvL_ZbMgphAwARU6xIB2S6XM3KZzptw9437Td9Nb2hS9_8GXugpnX0s3O4pSu0Me8PtO48naFDb3p0tETj24jdkZvabAOOznNIvmbT9eQ9KRdv88lLmVheyD7JKiMsq4BZZMxY52pgmVFYq5TlxmJuUHCpCgdZVlWsUDWXEmLuUCDnVgzJ4-nuzne_ewy93nR738aXWkAuIYWUy9hip5b1XQgea73zzY_xB81AH4XpozB9FKbPwiLzcGIaRLzoKyhUxsU_XORl0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084060624</pqid></control><display><type>article</type><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</creator><creatorcontrib>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</creatorcontrib><description>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3394168</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Blockchain ; Computational modeling ; Data models ; Data privacy ; Digital signatures ; Effectiveness ; Federated learning ; federated learning (FL) ; Fourth Industrial Revolution ; Industry 4.0 ; Machine learning ; model security ; Poisoning ; Privacy ; Protection ; Security</subject><ispartof>IEEE internet of things journal, 2024-08, Vol.11 (15), p.26234-26252</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</citedby><cites>FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</cites><orcidid>0009-0000-1655-2254 ; 0000-0002-5974-1570 ; 0000-0001-5436-7674 ; 0009-0001-3395-8181 ; 0000-0001-9985-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10509572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10509572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Tian, Youliang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Xiang, Axin</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Xiong, Jinbo</creatorcontrib><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</description><subject>Algorithms</subject><subject>Blockchain</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Digital signatures</subject><subject>Effectiveness</subject><subject>Federated learning</subject><subject>federated learning (FL)</subject><subject>Fourth Industrial Revolution</subject><subject>Industry 4.0</subject><subject>Machine learning</subject><subject>model security</subject><subject>Poisoning</subject><subject>Privacy</subject><subject>Protection</subject><subject>Security</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gOAh4Hnr5Gs_vElttbLSQus5ZJNZ2VJ3a7IV-u9NaQ89zcD7PjPwEHLPYMwYFE8f88V6zIHLsRCFZGl-RQZc8CyRacqvL_ZbMgphAwARU6xIB2S6XM3KZzptw9437Td9Nb2hS9_8GXugpnX0s3O4pSu0Me8PtO48naFDb3p0tETj24jdkZvabAOOznNIvmbT9eQ9KRdv88lLmVheyD7JKiMsq4BZZMxY52pgmVFYq5TlxmJuUHCpCgdZVlWsUDWXEmLuUCDnVgzJ4-nuzne_ewy93nR738aXWkAuIYWUy9hip5b1XQgea73zzY_xB81AH4XpozB9FKbPwiLzcGIaRLzoKyhUxsU_XORl0Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Li, Jing</creator><creator>Tian, Youliang</creator><creator>Zhou, Zhou</creator><creator>Xiang, Axin</creator><creator>Wang, Shuai</creator><creator>Xiong, Jinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-1655-2254</orcidid><orcidid>https://orcid.org/0000-0002-5974-1570</orcidid><orcidid>https://orcid.org/0000-0001-5436-7674</orcidid><orcidid>https://orcid.org/0009-0001-3395-8181</orcidid><orcidid>https://orcid.org/0000-0001-9985-1953</orcidid></search><sort><creationdate>20240801</creationdate><title>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</title><author>Li, Jing ; Tian, Youliang ; Zhou, Zhou ; Xiang, Axin ; Wang, Shuai ; Xiong, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7ba3c1b01ce11acddf017a5ef5618ace8ae32459d077bb195f24405efde3e22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blockchain</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Digital signatures</topic><topic>Effectiveness</topic><topic>Federated learning</topic><topic>federated learning (FL)</topic><topic>Fourth Industrial Revolution</topic><topic>Industry 4.0</topic><topic>Machine learning</topic><topic>model security</topic><topic>Poisoning</topic><topic>Privacy</topic><topic>Protection</topic><topic>Security</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Tian, Youliang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Xiang, Axin</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Xiong, Jinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jing</au><au>Tian, Youliang</au><au>Zhou, Zhou</au><au>Xiang, Axin</au><au>Wang, Shuai</au><au>Xiong, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSFL: Ensuring Data Privacy and Model Security for Federated Learning</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>11</volume><issue>15</issue><spage>26234</spage><epage>26252</epage><pages>26234-26252</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this article, we propose PSFL, a robust federated learning framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multireceiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%-20% higher than trimmed mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3394168</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0000-1655-2254</orcidid><orcidid>https://orcid.org/0000-0002-5974-1570</orcidid><orcidid>https://orcid.org/0000-0001-5436-7674</orcidid><orcidid>https://orcid.org/0009-0001-3395-8181</orcidid><orcidid>https://orcid.org/0000-0001-9985-1953</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-08, Vol.11 (15), p.26234-26252
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10509572
source IEEE Electronic Library (IEL)
subjects Algorithms
Blockchain
Computational modeling
Data models
Data privacy
Digital signatures
Effectiveness
Federated learning
federated learning (FL)
Fourth Industrial Revolution
Industry 4.0
Machine learning
model security
Poisoning
Privacy
Protection
Security
title PSFL: Ensuring Data Privacy and Model Security for Federated Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSFL:%20Ensuring%20Data%20Privacy%20and%20Model%20Security%20for%20Federated%20Learning&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Jing&rft.date=2024-08-01&rft.volume=11&rft.issue=15&rft.spage=26234&rft.epage=26252&rft.pages=26234-26252&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3394168&rft_dat=%3Cproquest_RIE%3E3084060624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084060624&rft_id=info:pmid/&rft_ieee_id=10509572&rfr_iscdi=true