Margin-Based Scenario Approach to Robust Optimization in High Dimension

This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-10, Vol.69 (10), p.7182-7189
1. Verfasser: Lauer, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7189
container_issue 10
container_start_page 7182
container_title IEEE transactions on automatic control
container_volume 69
creator Lauer, Fabien
description This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.
doi_str_mv 10.1109/TAC.2024.3393790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508442</ieee_id><sourcerecordid>3110477571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnjxszecme1yrtkKloPUc0t2kTWk3a7IV9NebskU8DTM87zDzAHCN0QhjVNwvyvGIIMJGlBZUFOgEDDDnMiOc0FMwQAjLrCAyPwcXMW5SmzOGB2DyqsPKNdmDjqaG75VpdHAelm0bvK7WsPPwzS_3sYPztnM796M75xvoGjh1qzV8dDvTxDS5BGdWb6O5OtYh-Hh-Woyn2Ww-eRmXs6yiBHdZjqyo69zKJeWSW1kzLrilwjJSEUYZMdoWVurCFJLxSlLC2ZKgyhJECas5HYK7fu9ab1Ub3E6Hb-W1U9Nypg4zxBAmIudfJLG3PZt--dyb2KmN34cmnadocsaE4AInCvVUFXyMwdi_tRipg1qV1KqDWnVUmyI3fcQZY_7hHEnGCP0Fa3NySQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110477571</pqid></control><display><type>article</type><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><source>IEEE Electronic Library (IEL)</source><creator>Lauer, Fabien</creator><creatorcontrib>Lauer, Fabien</creatorcontrib><description>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3393790</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity ; Complexity theory ; Constraints ; Learning theory ; Machine Learning ; Mathematics ; Optimization ; Optimization and Control ; Parameter modification ; Parameter robustness ; Parameter uncertainty ; Polynomials ; Probability distribution ; Random sampling ; Random variables ; Randomized algorithms ; robust optimization ; Robustness (mathematics) ; scenario approach ; Statistical analysis ; Statistical learning ; Statistics ; Toy manufacturing industry ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7182-7189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</cites><orcidid>0000-0002-2047-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-04012765$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauer, Fabien</creatorcontrib><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</description><subject>Complexity</subject><subject>Complexity theory</subject><subject>Constraints</subject><subject>Learning theory</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Parameter modification</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Random sampling</subject><subject>Random variables</subject><subject>Randomized algorithms</subject><subject>robust optimization</subject><subject>Robustness (mathematics)</subject><subject>scenario approach</subject><subject>Statistical analysis</subject><subject>Statistical learning</subject><subject>Statistics</subject><subject>Toy manufacturing industry</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnjxszecme1yrtkKloPUc0t2kTWk3a7IV9NebskU8DTM87zDzAHCN0QhjVNwvyvGIIMJGlBZUFOgEDDDnMiOc0FMwQAjLrCAyPwcXMW5SmzOGB2DyqsPKNdmDjqaG75VpdHAelm0bvK7WsPPwzS_3sYPztnM796M75xvoGjh1qzV8dDvTxDS5BGdWb6O5OtYh-Hh-Woyn2Ww-eRmXs6yiBHdZjqyo69zKJeWSW1kzLrilwjJSEUYZMdoWVurCFJLxSlLC2ZKgyhJECas5HYK7fu9ab1Ub3E6Hb-W1U9Nypg4zxBAmIudfJLG3PZt--dyb2KmN34cmnadocsaE4AInCvVUFXyMwdi_tRipg1qV1KqDWnVUmyI3fcQZY_7hHEnGCP0Fa3NySQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lauer, Fabien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2047-0734</orcidid></search><sort><creationdate>20241001</creationdate><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><author>Lauer, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Complexity theory</topic><topic>Constraints</topic><topic>Learning theory</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Parameter modification</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Random sampling</topic><topic>Random variables</topic><topic>Randomized algorithms</topic><topic>robust optimization</topic><topic>Robustness (mathematics)</topic><topic>scenario approach</topic><topic>Statistical analysis</topic><topic>Statistical learning</topic><topic>Statistics</topic><topic>Toy manufacturing industry</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauer, Fabien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lauer, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Margin-Based Scenario Approach to Robust Optimization in High Dimension</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>69</volume><issue>10</issue><spage>7182</spage><epage>7189</epage><pages>7182-7189</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3393790</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2047-0734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7182-7189
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10508442
source IEEE Electronic Library (IEL)
subjects Complexity
Complexity theory
Constraints
Learning theory
Machine Learning
Mathematics
Optimization
Optimization and Control
Parameter modification
Parameter robustness
Parameter uncertainty
Polynomials
Probability distribution
Random sampling
Random variables
Randomized algorithms
robust optimization
Robustness (mathematics)
scenario approach
Statistical analysis
Statistical learning
Statistics
Toy manufacturing industry
Uncertainty
title Margin-Based Scenario Approach to Robust Optimization in High Dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Margin-Based%20Scenario%20Approach%20to%20Robust%20Optimization%20in%20High%20Dimension&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lauer,%20Fabien&rft.date=2024-10-01&rft.volume=69&rft.issue=10&rft.spage=7182&rft.epage=7189&rft.pages=7182-7189&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3393790&rft_dat=%3Cproquest_RIE%3E3110477571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110477571&rft_id=info:pmid/&rft_ieee_id=10508442&rfr_iscdi=true