Margin-Based Scenario Approach to Robust Optimization in High Dimension
This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-10, Vol.69 (10), p.7182-7189 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7189 |
---|---|
container_issue | 10 |
container_start_page | 7182 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Lauer, Fabien |
description | This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances. |
doi_str_mv | 10.1109/TAC.2024.3393790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508442</ieee_id><sourcerecordid>3110477571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnjxszecme1yrtkKloPUc0t2kTWk3a7IV9NebskU8DTM87zDzAHCN0QhjVNwvyvGIIMJGlBZUFOgEDDDnMiOc0FMwQAjLrCAyPwcXMW5SmzOGB2DyqsPKNdmDjqaG75VpdHAelm0bvK7WsPPwzS_3sYPztnM796M75xvoGjh1qzV8dDvTxDS5BGdWb6O5OtYh-Hh-Woyn2Ww-eRmXs6yiBHdZjqyo69zKJeWSW1kzLrilwjJSEUYZMdoWVurCFJLxSlLC2ZKgyhJECas5HYK7fu9ab1Ub3E6Hb-W1U9Nypg4zxBAmIudfJLG3PZt--dyb2KmN34cmnadocsaE4AInCvVUFXyMwdi_tRipg1qV1KqDWnVUmyI3fcQZY_7hHEnGCP0Fa3NySQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110477571</pqid></control><display><type>article</type><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><source>IEEE Electronic Library (IEL)</source><creator>Lauer, Fabien</creator><creatorcontrib>Lauer, Fabien</creatorcontrib><description>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3393790</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity ; Complexity theory ; Constraints ; Learning theory ; Machine Learning ; Mathematics ; Optimization ; Optimization and Control ; Parameter modification ; Parameter robustness ; Parameter uncertainty ; Polynomials ; Probability distribution ; Random sampling ; Random variables ; Randomized algorithms ; robust optimization ; Robustness (mathematics) ; scenario approach ; Statistical analysis ; Statistical learning ; Statistics ; Toy manufacturing industry ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7182-7189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</cites><orcidid>0000-0002-2047-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-04012765$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauer, Fabien</creatorcontrib><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</description><subject>Complexity</subject><subject>Complexity theory</subject><subject>Constraints</subject><subject>Learning theory</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Parameter modification</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Random sampling</subject><subject>Random variables</subject><subject>Randomized algorithms</subject><subject>robust optimization</subject><subject>Robustness (mathematics)</subject><subject>scenario approach</subject><subject>Statistical analysis</subject><subject>Statistical learning</subject><subject>Statistics</subject><subject>Toy manufacturing industry</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnjxszecme1yrtkKloPUc0t2kTWk3a7IV9NebskU8DTM87zDzAHCN0QhjVNwvyvGIIMJGlBZUFOgEDDDnMiOc0FMwQAjLrCAyPwcXMW5SmzOGB2DyqsPKNdmDjqaG75VpdHAelm0bvK7WsPPwzS_3sYPztnM796M75xvoGjh1qzV8dDvTxDS5BGdWb6O5OtYh-Hh-Woyn2Ww-eRmXs6yiBHdZjqyo69zKJeWSW1kzLrilwjJSEUYZMdoWVurCFJLxSlLC2ZKgyhJECas5HYK7fu9ab1Ub3E6Hb-W1U9Nypg4zxBAmIudfJLG3PZt--dyb2KmN34cmnadocsaE4AInCvVUFXyMwdi_tRipg1qV1KqDWnVUmyI3fcQZY_7hHEnGCP0Fa3NySQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lauer, Fabien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2047-0734</orcidid></search><sort><creationdate>20241001</creationdate><title>Margin-Based Scenario Approach to Robust Optimization in High Dimension</title><author>Lauer, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-60f7dd6f8b3585f8d4575f37f42c24342eaf9f8a9e9845c83254b20cf20324d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Complexity theory</topic><topic>Constraints</topic><topic>Learning theory</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Parameter modification</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Random sampling</topic><topic>Random variables</topic><topic>Randomized algorithms</topic><topic>robust optimization</topic><topic>Robustness (mathematics)</topic><topic>scenario approach</topic><topic>Statistical analysis</topic><topic>Statistical learning</topic><topic>Statistics</topic><topic>Toy manufacturing industry</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauer, Fabien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lauer, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Margin-Based Scenario Approach to Robust Optimization in High Dimension</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>69</volume><issue>10</issue><spage>7182</spage><epage>7189</epage><pages>7182-7189</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain reliability. In this article, we introduce an additional margin in the constraints and analyze the probability of violation of solutions to the modified random programs. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of problems does not explicitly depend on the number of variables. In addition, within this class, that includes polynomial constraints among others, the same guarantees hold for both convex and nonconvex instances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3393790</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2047-0734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-10, Vol.69 (10), p.7182-7189 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_10508442 |
source | IEEE Electronic Library (IEL) |
subjects | Complexity Complexity theory Constraints Learning theory Machine Learning Mathematics Optimization Optimization and Control Parameter modification Parameter robustness Parameter uncertainty Polynomials Probability distribution Random sampling Random variables Randomized algorithms robust optimization Robustness (mathematics) scenario approach Statistical analysis Statistical learning Statistics Toy manufacturing industry Uncertainty |
title | Margin-Based Scenario Approach to Robust Optimization in High Dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Margin-Based%20Scenario%20Approach%20to%20Robust%20Optimization%20in%20High%20Dimension&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lauer,%20Fabien&rft.date=2024-10-01&rft.volume=69&rft.issue=10&rft.spage=7182&rft.epage=7189&rft.pages=7182-7189&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3393790&rft_dat=%3Cproquest_RIE%3E3110477571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110477571&rft_id=info:pmid/&rft_ieee_id=10508442&rfr_iscdi=true |